随笔分类 - Representation Learning
摘要:Rombach R., Blattmann A., Lorenz D., Esser P. and Ommer B. High-resolution image synthesis with latent diffusion models. In IEEE Computer Vision and P
阅读全文
摘要:Zhang M., Cui Z., Jiang S. and Chen Y. Beyond link prediction: Predicting hyperlinks in adjacency space. In AAAI Conference on Advancement of Artifici
阅读全文
摘要:Zhang M. and Chen Y. Link prediction based on graph neural networks. In Advances in Neural Information Processing Systems (NIPS), 2018. 概 这篇工作 的延续的工作.
阅读全文
摘要:Zhang M. and Chen Y. Weisfeiler-Lehman neural machine for link prediction. In ACM International Conference on Knowledge Discovery and Data Mining (KDD
阅读全文
摘要:Pan L., Shi C., Dokmani{'c} I. Neural link prediction with walk pooling. In International Conference on Learning Representations (ICLR), 2022. 概 作者认为
阅读全文
摘要:Cai X., Huang C., Xia L. and Ren X. LightGCL: Simple yet effective graph contrastive learning for recommendation. In International Conference on Learn
阅读全文
摘要:Song J., Meng C. and Ermon S. Denoising diffusion implicit models. In International Conference on Learning Representations (ICLR), 2021. 概 DDIM 从另一种观点
阅读全文
摘要:Choi J., Lee J., Shin C., Kim S., Kim H. and Yoon S. Perception prioritized training of diffusion models. In IEEE Computer Vision and Pattern Recognit
阅读全文
摘要:Gong S., Li M., Feng J., Wu Z. and Kong L. DiffuSeq: Sequence to sequence text generation with diffusion models. In International Conference on Learni
阅读全文
摘要:Li X. L., Thickstun J., Gulrajani I., Liang P. and Hashimoto T. B. Diffusion-lm improves controllable text generation. arXiv preprint arXiv:2205.14217
阅读全文
摘要:Choi J., Hong S., Park N. and Cho S. GREAD: graph neural reaction-diffusion equations. arXiv preprint arXiv: arXiv:2211.14208 概 作者提出了一种基于 reaction-dif
阅读全文
摘要:Chen R. T. Q., Rubanova Y., Bettencourt J. and Duvenaud D. Neural ordinary differential equations. In Advances in Neural Information Processing System
阅读全文
摘要:Alemi A. A., Fischer I., Dillon J. V. and Murphy K. Deep variational information bottleneck. In International Conference on Learning Representations (
阅读全文
摘要:Gasteiger J., Bojchevski A. and G\ddot{u}nnemann S. Predict then propagate: graph neural networks meet personalized pagerank. In International Confere
阅读全文
摘要:Gasteiger J., Weißenberger S., Günnemann S. Diffusion improves graph learning. In Advances in Neural Information Processing Systems (NIPS), 2019. 概 传统
阅读全文
摘要:Ying R., He R., Chen K., Eksombatchai P., Hamilton W. L. and Leskovec J. Graph convolutional neural networks for web-scale recommender systems. In ACM
阅读全文
摘要:Liu S., Ying R., Dong H., Lin L., Chen J., Wu D. How powerful is implicit denoising in graph neural networks? arXiv preprint arXiv: 2209.14514, 2022.
阅读全文
摘要:Zhu M., Wang X., Shi C., Ji H. and Cui P. Interpreting and unifying graph neural networks with an optimization framework. In International World Wide
阅读全文
摘要:Zhao L. and Akoglu L. Connecting graph convolution and graph pca. 2022. 概 从 graph-regularized PCA 角度提出一种 GCN 的 message passing layer. 符号说明
阅读全文
摘要:Liu X., Jin W., Ma Y., Li Y., Li Y., Liu H., Wang Y., Yan M. and Tang J. Elastic graph neural networks. In International Conference on Machine Learnin
阅读全文