随笔分类 -  Representation Learning

摘要:Rombach R., Blattmann A., Lorenz D., Esser P. and Ommer B. High-resolution image synthesis with latent diffusion models. In IEEE Computer Vision and P 阅读全文
posted @ 2023-03-16 20:12 馒头and花卷 阅读(252) 评论(2) 推荐(0) 编辑
摘要:Zhang M., Cui Z., Jiang S. and Chen Y. Beyond link prediction: Predicting hyperlinks in adjacency space. In AAAI Conference on Advancement of Artifici 阅读全文
posted @ 2023-03-14 19:58 馒头and花卷 阅读(34) 评论(0) 推荐(0) 编辑
摘要:Zhang M. and Chen Y. Link prediction based on graph neural networks. In Advances in Neural Information Processing Systems (NIPS), 2018. 概 这篇工作 的延续的工作. 阅读全文
posted @ 2023-03-12 14:44 馒头and花卷 阅读(176) 评论(0) 推荐(0) 编辑
摘要:Zhang M. and Chen Y. Weisfeiler-Lehman neural machine for link prediction. In ACM International Conference on Knowledge Discovery and Data Mining (KDD 阅读全文
posted @ 2023-03-11 20:05 馒头and花卷 阅读(169) 评论(0) 推荐(0) 编辑
摘要:Pan L., Shi C., Dokmani{'c} I. Neural link prediction with walk pooling. In International Conference on Learning Representations (ICLR), 2022. 概 作者认为 阅读全文
posted @ 2023-03-11 14:20 馒头and花卷 阅读(149) 评论(0) 推荐(1) 编辑
摘要:Cai X., Huang C., Xia L. and Ren X. LightGCL: Simple yet effective graph contrastive learning for recommendation. In International Conference on Learn 阅读全文
posted @ 2023-03-11 09:53 馒头and花卷 阅读(137) 评论(0) 推荐(0) 编辑
摘要:Song J., Meng C. and Ermon S. Denoising diffusion implicit models. In International Conference on Learning Representations (ICLR), 2021. 概 DDIM 从另一种观点 阅读全文
posted @ 2023-03-07 15:27 馒头and花卷 阅读(218) 评论(0) 推荐(0) 编辑
摘要:Choi J., Lee J., Shin C., Kim S., Kim H. and Yoon S. Perception prioritized training of diffusion models. In IEEE Computer Vision and Pattern Recognit 阅读全文
posted @ 2023-03-05 19:06 馒头and花卷 阅读(219) 评论(0) 推荐(0) 编辑
摘要:Gong S., Li M., Feng J., Wu Z. and Kong L. DiffuSeq: Sequence to sequence text generation with diffusion models. In International Conference on Learni 阅读全文
posted @ 2023-03-04 11:39 馒头and花卷 阅读(509) 评论(0) 推荐(0) 编辑
摘要:Li X. L., Thickstun J., Gulrajani I., Liang P. and Hashimoto T. B. Diffusion-lm improves controllable text generation. arXiv preprint arXiv:2205.14217 阅读全文
posted @ 2023-03-02 20:17 馒头and花卷 阅读(243) 评论(0) 推荐(0) 编辑
摘要:Choi J., Hong S., Park N. and Cho S. GREAD: graph neural reaction-diffusion equations. arXiv preprint arXiv: arXiv:2211.14208 概 作者提出了一种基于 reaction-dif 阅读全文
posted @ 2022-12-01 16:53 馒头and花卷 阅读(345) 评论(0) 推荐(0) 编辑
摘要:Chen R. T. Q., Rubanova Y., Bettencourt J. and Duvenaud D. Neural ordinary differential equations. In Advances in Neural Information Processing System 阅读全文
posted @ 2022-11-30 20:26 馒头and花卷 阅读(255) 评论(0) 推荐(0) 编辑
摘要:Alemi A. A., Fischer I., Dillon J. V. and Murphy K. Deep variational information bottleneck. In International Conference on Learning Representations ( 阅读全文
posted @ 2022-11-19 14:19 馒头and花卷 阅读(340) 评论(0) 推荐(0) 编辑
摘要:Gasteiger J., Bojchevski A. and G\ddot{u}nnemann S. Predict then propagate: graph neural networks meet personalized pagerank. In International Confere 阅读全文
posted @ 2022-11-16 15:52 馒头and花卷 阅读(67) 评论(0) 推荐(0) 编辑
摘要:Gasteiger J., Weißenberger S., Günnemann S. Diffusion improves graph learning. In Advances in Neural Information Processing Systems (NIPS), 2019. 概 传统 阅读全文
posted @ 2022-11-06 12:46 馒头and花卷 阅读(546) 评论(0) 推荐(0) 编辑
摘要:Ying R., He R., Chen K., Eksombatchai P., Hamilton W. L. and Leskovec J. Graph convolutional neural networks for web-scale recommender systems. In ACM 阅读全文
posted @ 2022-10-29 15:09 馒头and花卷 阅读(80) 评论(0) 推荐(0) 编辑
摘要:Liu S., Ying R., Dong H., Lin L., Chen J., Wu D. How powerful is implicit denoising in graph neural networks? arXiv preprint arXiv: 2209.14514, 2022. 阅读全文
posted @ 2022-10-19 16:38 馒头and花卷 阅读(93) 评论(0) 推荐(0) 编辑
摘要:Zhu M., Wang X., Shi C., Ji H. and Cui P. Interpreting and unifying graph neural networks with an optimization framework. In International World Wide 阅读全文
posted @ 2022-10-18 10:38 馒头and花卷 阅读(70) 评论(0) 推荐(0) 编辑
摘要:Zhao L. and Akoglu L. Connecting graph convolution and graph pca. 2022. 概 从 graph-regularized PCA 角度提出一种 GCN 的 message passing layer. 符号说明 A~ 阅读全文
posted @ 2022-10-17 18:22 馒头and花卷 阅读(37) 评论(0) 推荐(0) 编辑
摘要:Liu X., Jin W., Ma Y., Li Y., Li Y., Liu H., Wang Y., Yan M. and Tang J. Elastic graph neural networks. In International Conference on Machine Learnin 阅读全文
posted @ 2022-10-17 16:05 馒头and花卷 阅读(64) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示