随笔分类 - Representation Learning
摘要:目录概符号说明S4D代码 Gu A., Gupta A., Goel K. and Re C. On the parameterization and initialization of diagonal state space models. NeurIPS, 2022. 概 Mamba 系列第四
阅读全文
摘要:目录概符号说明S4代码 Gu A., Goel K. and Re C. Efficiently modeling long sequences with structured state spaces. NeurIPS, 2022. 概 Mamba 系列第三作. 符号说明 \(u(t) \in \
阅读全文
摘要:目录概符号说明LSSL和其它方法的联系代码 Gu A., Johnson I., Goel K., Saab K., Dao T., Rudra A., and Re C. Combining recurrent, convolutional, and continuous-time models
阅读全文
摘要:目录概Motivation代码 Gu A., Dao T., Ermon S., Rudra A. and Re C. HiPPO: Recurrent memory with optimal polynomial projections. NIPS, 2021. 概 看下最近很火的 Mamba 的
阅读全文
摘要:目录概符号说明Unlearning LayersFusing Unlearning Layers代码 Chen J. and Yang D. Unlearn what you want to forget: efficient unlearning for llms. 2024. 概 本文提出一种
阅读全文
摘要:目录概主要内容BERT-FlowBERT-Whitening代码 [1] Li B., Zhou H., He J., Wang M., Yang Y. and Li L. On the sentence embeddings from pre-trained language models. AC
阅读全文
摘要:目录概TransE|H|R Bordes A., Usunier N., Garcia-Duran A., Weston J. and Yakhnenko O. Translating embeddings for modeling multi-relational data. NIPS, 2013
阅读全文
摘要:目录概符号说明ULTRA (a method for Unified, Learnable, and TRAnsferable KG representations)Relation Graph ConstructionConditional Relation Representations代码 G
阅读全文
摘要:目录概符号说明GPR-GNN代码 Chien E., Peng J., Li P. and Milenkovic O. Adaptive universal generalized pagerank graph neural network. ICLR, 2021. 概 GPR-GNN 自适应地学习
阅读全文
摘要:目录概符号说明MotivationROLAND训练策略Live-update Evaluation代码 You J., Du T. and Leskovec J. ROLAND: Graph learning framework for dynamic graphs. KDD, 2022. 概 dy
阅读全文
摘要:目录概符号说明EvolveGCN代码 Pareja A., Domeniconi G., Chen J., Ma T., Suzumura T., Kanezashi H., Kaler T., Schardl T. B. and Leiserson C. E. EvolveGCN: Evolvin
阅读全文
摘要:目录概符号说明MotivationGCOND代码 Jin W., Zhao L., Zhang S., Liu Y., Tang J. and Shah N. Graph condensation for graph neural networks. ICLR, 2022. 概 图上做压缩的工作.
阅读全文
摘要:目录概Noise contrastive estimation Mnih A. and Teh Y. W. A fast and simple algorithm for training neural probabilistic language models. ICML, 2012. 概 NCE
阅读全文
摘要:目录概符号说明DeepWalk代码 Perozzi B., AI-Rfou R. and Skiena S. DeepWalk: Online learning of social representations. KDD, 2014. 概 经典的 graph embedding 学习方法. 符号说
阅读全文
摘要:目录概符号说明MotivationNewtonNet代码 Xu J., Dai E., Luo D>, Zhang X. and Wang S. Learning graph filters for spectral gnns via newton interpolation. 2023. 概 令谱
阅读全文
摘要:目录概符号说明DSF代码 Guo J., Huang K, Yi X. and Zhang R. Graph neural networks with diverse spectral filtering. WWW, 2023. 概 为每个结点赋予不同的多项式系数. 符号说明 \(\mathcal{
阅读全文
摘要:目录概符号说明Spectral GNNChoice of Basis for Polynomial FiltersJacobiConv代码 Wang X. and Zhang M. How powerful are spectral graph neural networks? ICML, 2022
阅读全文
摘要:目录概符号说明GATv2代码 Brody S., Alon U. and Yahav E. How attentive are graph attention networks? ICLR, 2022. 概 作者发现了 GAT 的 attention 并不能够抓住边的重要性, 于是提出了 GATv2
阅读全文
摘要:目录概符号说明Shadow-GNN代码 Zeng H., Zhang M., Xia Y., Srivastava A., Malevich A., Kannan R., Prasanna V., Jin L. and Chen R. Decoupling the depth and scope o
阅读全文
摘要:目录概符号说明AirGNN代码 Liu X., Ding J., Jin W., Xu H., Ma Y., Liu Z. and Tang J. Graph neural networks with adaptive residual. NIPS, 2021. 概 基于 UGNN 框架的一个更加鲁
阅读全文