随笔分类 - Robust Learning
摘要:Koh P W, Liang P. Understanding black-box predictions via influence functions[C]. international conference on machine learning, 2017: 1885-1894. @arti
阅读全文
摘要:Ilyas A, Santurkar S, Tsipras D, et al. Adversarial Examples Are Not Bugs, They Are Features[C]. neural information processing systems, 2019: 125-136.
阅读全文
摘要:Moosavidezfooli S, Fawzi A, Frossard P, et al. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks[C]. computer vision and pattern rec
阅读全文
摘要:Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram Swami, The Limitations of Deep Learning in Adversarial Set
阅读全文
摘要:Alexey Kurakin, Ian J. Goodfellow, Samy Bengio, ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD 概 有很多种方法能够生成对抗样本(adversarial samples), 但是真实世界中是否存在这样的对抗样本呢?
阅读全文
摘要:Su J, Vargas D V, Sakurai K, et al. One Pixel Attack for Fooling Deep Neural Networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5):
阅读全文
摘要:Nicholas Carlini, David Wagner, Towards Evaluating the Robustness of Neural Networks 概 提出了在不同范数下下生成adversarial samples的
阅读全文
摘要:Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami, Distillation as a Defense to Adversarial Perturbations against Deep Neural Net
阅读全文
摘要:Dan Hendrycks, Norman Mu,, et. al, AUGMIX : A SIMPLE DATA PROCESSING METHOD TO IMPROVE ROBUSTNESS AND UNCERTAINTY. 概 本文介绍AUGMIX算法——对现有的的一些augmentation
阅读全文
摘要:Xie C, Tan M, Gong B, et al. Adversarial Examples Improve Image Recognition.[J]. arXiv: Computer Vision and Pattern Recognition, 2019. @article{xie201
阅读全文
摘要:Zhang H, Yu Y, Jiao J, et al. Theoretically Principled Trade-off between Robustness and Accuracy[J]. arXiv: Learning, 2019. @article{zhang2019theoreti
阅读全文
摘要:Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adversarial Attacks.[J]. arXiv: Machine Learning, 2017. @article{madry
阅读全文
摘要:Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial Examples[J]. arXiv: Machine Learning, 2014. @article{goodfellow2014exp
阅读全文
摘要:Papernot N, Mcdaniel P, Goodfellow I, et al. Practical Black-Box Attacks against Machine Learning[C]. computer and communications security, 2017: 506-
阅读全文