随笔分类 -  Robust Learning

摘要:Dong C., Liu L. and Shang J. Double descent in adversarial training: an implicit label noise perspective. In International Conference on Learning Repr 阅读全文
posted @ 2022-04-14 22:26 馒头and花卷 阅读(68) 评论(0) 推荐(0) 编辑
摘要:Dong Y., Xu K., Yang X. Pang T., Deng Z. Su H. and Zhu J. Exploring memorization in adversarial training. In International Conference on Learning Repr 阅读全文
posted @ 2022-04-12 21:32 馒头and花卷 阅读(92) 评论(2) 推荐(0) 编辑
摘要:Feldman V. and Zhang C. What neural networks memorize and why: discovering the long tail via influence estimation. In Advances in Neural Information P 阅读全文
posted @ 2022-04-07 00:26 馒头and花卷 阅读(133) 评论(0) 推荐(0) 编辑
摘要:Feldman V. Does learning require memorization? a short tale about a long tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com 阅读全文
posted @ 2022-04-06 15:18 馒头and花卷 阅读(143) 评论(0) 推荐(0) 编辑
摘要:Xu H., Liu X., Wang W., Jain A. K. Tang J., Ding W., Wu Z. and Liu Z. Towards the memorization effect of neural networks in adversarial training. In I 阅读全文
posted @ 2022-04-03 15:10 馒头and花卷 阅读(74) 评论(0) 推荐(0) 编辑
摘要:Ni S., Li J. and Kao H. DropAttack: a masked weight adversarial training method to improve generalization of neural networks. In International Confere 阅读全文
posted @ 2022-04-02 14:41 馒头and花卷 阅读(87) 评论(0) 推荐(0) 编辑
摘要:Hendrycks D., Basart S., Mu N., Kadavath S., Wang F., Dorundo E., Desai R., Zhu T., Parajuli S., Guo M., Song D., Steinhardt J. Gilmer J. The many fac 阅读全文
posted @ 2021-12-11 14:15 馒头and花卷 阅读(165) 评论(0) 推荐(0) 编辑
摘要:Chen E. and Lee C. LTD: Low temperature distillation for robust adversarial training. arXiv preprint arXiv:2111.02331, 2021. 概 本文利用distillation来提高网络鲁棒 阅读全文
posted @ 2021-12-10 11:03 馒头and花卷 阅读(64) 评论(0) 推荐(0) 编辑
摘要:Croce F. and Hein M. Mind the box: 1-APGD for sparse adversarial attacks on image classifiers. In International Conference on Machine Learnin 阅读全文
posted @ 2021-11-16 20:51 馒头and花卷 阅读(88) 评论(0) 推荐(0) 编辑
摘要:Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ingredients of adversarially robust deep neural networks. In Advances 阅读全文
posted @ 2021-11-11 19:15 馒头and花卷 阅读(51) 评论(0) 推荐(0) 编辑
摘要:Rade R. and Moosavi-Dezfooli S. Helper-based adversarial training: reducing excessive margin to achieve a better accuracy vs. robustness trade-off. In 阅读全文
posted @ 2021-11-10 16:12 馒头and花卷 阅读(519) 评论(0) 推荐(0) 编辑
摘要:Zhang J., Xu X., Han B., Niu G., Cui L., Sugiyama M., Kankanhalli M. Attacks which do not kill training make adversarial learning stronger. In Interna 阅读全文
posted @ 2021-11-09 19:01 馒头and花卷 阅读(361) 评论(0) 推荐(0) 编辑
摘要:Andriushchenko M. and Flammarion N. Understanding and improving fast adversarial training. In Advances in Neural Information Processing Systems (NIPS) 阅读全文
posted @ 2021-10-23 16:41 馒头and花卷 阅读(174) 评论(0) 推荐(0) 编辑
摘要:Kernel Density (KD) Feinman R., Curtin R. R., Shintre S. and Gardner A. B. Detecting Adversarial Samples from Artifacts. arXiv preprint arXiv:1703.004 阅读全文
posted @ 2021-09-10 17:08 馒头and花卷 阅读(126) 评论(0) 推荐(0) 编辑
摘要:Pang T., Zhang H., He D., Dong Y., Su H., Chen W., Zhu J., Liu T. Adversarial training with rectified rejection. arXiv Preprint, arXiv: 2105.14785, 20 阅读全文
posted @ 2021-08-31 21:07 馒头and花卷 阅读(63) 评论(0) 推荐(0) 编辑
摘要:Leino K., Wang Z. and Fredrikson M. Globally-robust neural networks. In International Conference on Machine Learning (ICML), 2021. 概 本文是一种可验证的鲁棒方法, 并且 阅读全文
posted @ 2021-07-22 18:40 馒头and花卷 阅读(136) 评论(0) 推荐(0) 编辑
摘要:Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via channel-wise activation suppressing. In International Conferenc 阅读全文
posted @ 2021-07-21 16:56 馒头and花卷 阅读(188) 评论(0) 推荐(0) 编辑
摘要:Foret P., Kleiner A., Mobahi H., Neyshabur B. Sharpness-aware minimization for efficiently improving generalization. In International Conference on Le 阅读全文
posted @ 2021-06-30 17:17 馒头and花卷 阅读(518) 评论(0) 推荐(0) 编辑
摘要:Heuristics-driven Pad and Crop He K., Zhang X., Ren S. and Sun J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision 阅读全文
posted @ 2021-06-14 11:58 馒头and花卷 阅读(100) 评论(0) 推荐(0) 编辑
摘要:Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chiang M. and Mittal P. Improving adversarial robustness using proxy Distributions. arXiv pre 阅读全文
posted @ 2021-05-05 12:00 馒头and花卷 阅读(127) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示