随笔分类 -  Robust Learning

摘要:Guo S., Zou L., Liu Y., Ye W., Cheng S., Wang S., Chen H., Yin D. and Chang Y. Enhanced doubly robust learning for debiasing post-click conversion rat 阅读全文
posted @ 2022-08-11 21:16 馒头and花卷 阅读(196) 评论(0) 推荐(1) 编辑
摘要:Tian C., Xie Y., Li Y., Yang N. and Zhao W. Learning to denoise unreliable interactions for graph collaborative filtering. In ACM SIGIR Conference on 阅读全文
posted @ 2022-07-27 15:58 馒头and花卷 阅读(323) 评论(0) 推荐(1) 编辑
摘要:Wang X., Zhang R., Sun Y. and Qi J. Doubly robust joint learning for recommendation on data missing not at random. In International Conference on Mach 阅读全文
posted @ 2022-07-17 15:43 馒头and花卷 阅读(521) 评论(3) 推荐(1) 编辑
摘要:Schnabel T., Swaminathan A., Singh A., Chandak N., Joachims T. Recommendations as treatments: debiasing learning and evaluation. In International Conf 阅读全文
posted @ 2022-07-16 15:22 馒头and花卷 阅读(335) 评论(0) 推荐(0) 编辑
摘要:Ge Y., Tan J., Zhu Y., Xia Y., Luo J., Liu S., Fu Z., Geng S., Li Z. and Zhang Y. Explainable fairness in recommendation. In International ACM SIGIR C 阅读全文
posted @ 2022-07-15 12:19 馒头and花卷 阅读(234) 评论(4) 推荐(0) 编辑
摘要:Celis L. E., Straszak D. and Vishnoi N. K. Ranking with fairness constraints. arXiv preprint arXiv:1704.06840, 2017. 概 本文讨论在一种'强硬'的 Fairness 约束下, 如何 ( 阅读全文
posted @ 2022-07-09 16:31 馒头and花卷 阅读(49) 评论(0) 推荐(0) 编辑
摘要:Suresh Harini. A framework for understanding sources of harm throughout the machine learning life cycle. arXiv preprint arXiv:1901.10002, 2019. 概 本文介绍 阅读全文
posted @ 2022-07-07 23:03 馒头and花卷 阅读(42) 评论(0) 推荐(0) 编辑
摘要:Zhu Z., Kim J. and Nguyen T. Fairness among new items in cold start recommender systems. In International ACM SIGIR Conference on Research and Develop 阅读全文
posted @ 2022-06-15 15:00 馒头and花卷 阅读(78) 评论(0) 推荐(0) 编辑
摘要:Zhang S., Yin H., Chen T., Huang Z., Cui L. and Zhang X. Graph embedding for recommendation against attribute inference attacks. In International Worl 阅读全文
posted @ 2022-06-13 16:39 馒头and花卷 阅读(145) 评论(0) 推荐(1) 编辑
摘要:Wu C., Wu F., Qi T. and Huang Y. FairRec: fairness-aware news recommendation with decomposed adversarial learning. In AAAI Conference on Artificial In 阅读全文
posted @ 2022-06-10 17:18 馒头and花卷 阅读(122) 评论(0) 推荐(0) 编辑
摘要:Naghiaei M., Rahmani H. A. and Deldjoo Y. CPFair: personalized consumer and producer fairness re-ranking for recommender systems. In International ACM 阅读全文
posted @ 2022-06-10 11:29 馒头and花卷 阅读(133) 评论(0) 推荐(0) 编辑
摘要:Samuel D. and Chechik G. Distributional robustness loss for long-tail learning. In International Conference on Computer Vision (ICCV), 2021. 概 本文利用 Di 阅读全文
posted @ 2022-06-09 13:46 馒头and花卷 阅读(227) 评论(0) 推荐(0) 编辑
摘要:Zhang Y., Tan Y., Zhang M., Liu Y., Chua T. and Ma S. Catch the black sheep: unified framework for shilling attack detection based on fraudulent actio 阅读全文
posted @ 2022-06-05 15:44 馒头and花卷 阅读(137) 评论(0) 推荐(0) 编辑
摘要:Lin C., Chen S., Li H., Xiao Y., Li L. and Yang Q. Attacking recommender systems with augmented user profiles. In ACM International Conference on Info 阅读全文
posted @ 2022-06-03 18:19 馒头and花卷 阅读(122) 评论(0) 推荐(0) 编辑
摘要:Zhang H., Li Y., Ding B. and Gao J. Practical data poisoning attack against next-item recommendation. International World Wide Web Conferences (WWW), 阅读全文
posted @ 2022-06-03 11:24 馒头and花卷 阅读(83) 评论(0) 推荐(0) 编辑
摘要:He X., He Z., Du X. and Chua T. Adversarial personalized ranking for recommendation. In International ACM SIGIR Conference on Research and Development 阅读全文
posted @ 2022-05-26 17:31 馒头and花卷 阅读(51) 评论(0) 推荐(0) 编辑
摘要:Li B., Wang Y., Singh A. and Vorobeychik Y. Data poisoning attacks on factorization-based collaborative filtering. In Advances in Neural Information P 阅读全文
posted @ 2022-05-11 17:00 馒头and花卷 阅读(140) 评论(0) 推荐(0) 编辑
摘要:Sagawa S., Koh P. W., Hashimoto T. B. and Liang P. Distributionally robust neural networks for group shifts: on the importance of regularization for w 阅读全文
posted @ 2022-05-06 11:32 馒头and花卷 阅读(1404) 评论(0) 推荐(0) 编辑
摘要:Lee S., Lee H. and Yoon S. Adversarial vertex mixup: toward better adversarially robust generalization. In IEEE Conference on Computer Vsion and Patte 阅读全文
posted @ 2022-04-30 13:10 馒头and花卷 阅读(168) 评论(0) 推荐(0) 编辑
摘要:Flooding-X: improving bert’s resistance to adversarial attacks via loss-restricted fine-tuning. 概 作者认为通过 flooding 能够使得 loss landscape 平滑, 这有利于抵抗对抗攻击. 阅读全文
posted @ 2022-04-24 21:56 馒头and花卷 阅读(370) 评论(0) 推荐(1) 编辑

点击右上角即可分享
微信分享提示