随笔分类 -  Neural Networks

摘要:目录概符号说明Empirical AnalysisSkeleton GraphNode FetchingGraph Condensation代码 Cao L., Deng H., Wang C., Chen L. and Yang Y. Graph-skeleton: ~1% nodes are s 阅读全文
posted @ 2024-02-25 17:19 馒头and花卷 阅读(43) 评论(0) 推荐(0) 编辑
摘要:目录概符号说明GenAgg代码 Kortvelesy R., Morad S. and Prorok A. Generalised f-mean aggregation for graph neural networks. NIPS, 2023. 概 基于 MPNN 架构的 GNN 主要在于 agg 阅读全文
posted @ 2023-12-27 17:03 馒头and花卷 阅读(21) 评论(0) 推荐(0) 编辑
摘要:目录概符号说明Cold Brew代码 Zheng W., Huang E. W., Rao N., Katariya S., Wang Z., Subbian K. Cold brew: Distilling graph node representations with incomplete or 阅读全文
posted @ 2023-12-27 11:10 馒头and花卷 阅读(19) 评论(0) 推荐(0) 编辑
摘要:目录概符号说明MotivationFavardGNN代码 Guo Y. and Wei Z. Graph neural networks with learnable and optimal polynomial bases. ICML, 2023. 概 自动学多项式基的谱图神经网络. 符号说明 \ 阅读全文
posted @ 2023-12-02 16:21 馒头and花卷 阅读(61) 评论(0) 推荐(0) 编辑
摘要:目录概符号说明MotivationChebNetII代码 He M., Wei Z. and Wen J. Convolutional neural networks on graphs with chebyshev approximation, revisited. NIPS, 2022. 概 作 阅读全文
posted @ 2023-11-23 13:54 馒头and花卷 阅读(166) 评论(0) 推荐(0) 编辑
摘要:目录概MotivationMarked Temporal Point Process代码 Du N., Dai H., Trivedi R., Upadhyay U., Gomez-Rodriguze M. and Song L. Recurrent marked temporal point pr 阅读全文
posted @ 2023-11-09 16:24 馒头and花卷 阅读(111) 评论(0) 推荐(0) 编辑
摘要:目录概符号说明LLP代码 Guo Z., Shiao W., Zhang S., Liu Y., Chawla N. V., Shah N. and Zhao T. Linkless link prediction via relational distillation. ICML, 2023. 概 阅读全文
posted @ 2023-11-06 14:21 馒头and花卷 阅读(52) 评论(0) 推荐(0) 编辑
摘要:目录概符号说明DistillGCNLocal Structure Preserving代码 Yang Y., Qiu J., Song M., Tao D. and Wang X. Distilling knowledge from graph convolutional networks. CVP 阅读全文
posted @ 2023-11-03 16:00 馒头and花卷 阅读(19) 评论(0) 推荐(0) 编辑
摘要:目录概符号说明DKD代码 Zhao B., Cui Q., Song R., Qiu Y. and Liang J. Decoupled knowledge distillation. CVPR, 2022. 概 对普通的 KD (Knowledge Distillation) 损失解耦得到 Tar 阅读全文
posted @ 2023-11-02 14:45 馒头and花卷 阅读(110) 评论(0) 推荐(0) 编辑
摘要:目录概主要内容代码 Jiang J., Zhou K., Zhao W. and Wen J. UniKGQA: Unified retrieval and reasoning for solving multi-hop question answering over knowledge graph 阅读全文
posted @ 2023-10-22 17:18 馒头and花卷 阅读(92) 评论(0) 推荐(0) 编辑
摘要:目录概主要内容代码 Sun H., Dhingra B., Zaheer M., Mazaitis K., Salakhutdinov R. and Cohen W. W. Open domain question answering using early fusion of knowledge 阅读全文
posted @ 2023-10-22 16:23 馒头and花卷 阅读(28) 评论(0) 推荐(0) 编辑
摘要:[TOC] > [Su J., Lu Y., Pan S., Murtadha A., Wen B. and Liu Y. RoFormer: Enhanced transformer with rotary position embedding. ](http://arxiv.org/abs/21 阅读全文
posted @ 2023-07-24 17:38 馒头and花卷 阅读(306) 评论(0) 推荐(0) 编辑
摘要:[TOC] > [Zhang B. and Sennrich R. Root mean square layer normalization. NIPS, 2019.](http://arxiv.org/abs/1910.07467) ## 概 RMSNorm 节省时间. ## RMSNorm - 阅读全文
posted @ 2023-07-24 10:44 馒头and花卷 阅读(1471) 评论(2) 推荐(0) 编辑
摘要:[TOC] > [Yang Y., Liu T., Wang Y., Zhou J., Gan Q., Wei Z., Zhang Z., Huang Z. and Wipf D. Graph neural networks inspired by classical iterative algor 阅读全文
posted @ 2023-06-11 09:29 馒头and花卷 阅读(36) 评论(0) 推荐(0) 编辑
摘要:[TOC] > [Wu Q., Yang C., Zhao W., He Y., Wipf D. and Yan J. DIFFormer: Scalable (graph) transformers induced by energy constrained diffusion. ICLR, 20 阅读全文
posted @ 2023-06-08 13:39 馒头and花卷 阅读(79) 评论(0) 推荐(0) 编辑
摘要:Ying C., Cai T., Luo S., Zheng S., Ke D., Shen Y. and Liu T. Do transformers really perform badly for graph representation? NIPS, 2021. 概 本文提出了一种基于图的 阅读全文
posted @ 2023-05-17 16:03 馒头and花卷 阅读(64) 评论(0) 推荐(0) 编辑
摘要:Chen L., Li J., Peng Q., Liu Y., Zheng Z. and Yang C. Understanding structural vulnerability in graph convolutional networks. IJCAI, 2021. 概 mean 是在 G 阅读全文
posted @ 2023-05-17 13:34 馒头and花卷 阅读(14) 评论(0) 推荐(0) 编辑
摘要:Zhao L. and Akoglu L. Pairnorm: tackling oversmoothing in gnns. ICLR, 2020. 概 本文提出了一种 normaliztion 方法用于解决 over-smoothing 问题. 符号说明 $\mathcal{G} = (\mat 阅读全文
posted @ 2023-05-16 10:05 馒头and花卷 阅读(74) 评论(0) 推荐(0) 编辑
摘要:Li G., Xiong C., Thabet A. and Ghanem B. DeeperGcn: all you need to train deeper gcns. arXiv preprint arXiv:2006.07739 概 本文介绍了一种连续可微的 aggregation func 阅读全文
posted @ 2023-05-13 16:22 馒头and花卷 阅读(77) 评论(0) 推荐(0) 编辑
摘要:Liu M., Gao H. and Ji S. Towards deeper graph neural networks. KDD, 2020. 概 本文介绍了一种加深模型的方法. 符号说明 G=(V,E), 图; |V|=n; |E|=m; $\bm{A} \in \m 阅读全文
posted @ 2023-05-11 16:11 馒头and花卷 阅读(35) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示