手写数字识别-小数据集

1.手写数字数据集

  • from sklearn.datasets import load_digits
  • digits = load_digits()

2.图片数据预处理

  • x:归一化MinMaxScaler()
  • y:独热编码OneHotEncoder()或to_categorical
  • 训练集测试集划分
  • 张量结构
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import OneHotEncoder
scaler = MinMaxScaler() # 归一化
X_data = scaler.fit_transform(X_data)
print('MinMaxScaler_trans_X_data')
print(X_data)

Y = OneHotEncoder().fit_transform(Y_data).todense() # one-hot编码
print('ne-hot_Y')
print(Y)
 
X=X_data.reshape(-1,8,8,1) # 转换为图片格式
print(X)
# 划分训练集测试集
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
print(X_train.shape,X_test.shape,Y_train.shape,Y_test.shape)

MinMaxScaler_trans_X_data

One-hot_Y

3.设计卷积神经网络结构

  • 绘制模型结构图,并说明设计依据。

依据:四层卷积和三个最大池化层,Dropout层防止过拟合。

4.模型训练

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import  Dense,Dropout,Flatten,Conv2D,MaxPool2D

model = Sequential() # 建立模型
ks = (3, 3)  # 卷积核的大小
input_shape = X_train.shape[1:]
model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))#第一层输入数据的shape要指定外,其他层的数据的shape框架会自动推导
model.add(MaxPool2D(pool_size=(2, 2)))# 池化层1
model.add(Dropout(0.25))# 防止过拟合,随机丢掉连接
model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))# 二层卷积
model.add(MaxPool2D(pool_size=(2, 2)))# 池化层2
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))# 三层卷积
model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))# 四层卷积
model.add(MaxPool2D(pool_size=(2, 2)))# 池化层3
model.add(Dropout(0.25))
model.add(Flatten())# 平坦层
model.add(Dense(128, activation='relu'))# 全连接层
model.add(Dropout(0.25))
model.add(Dense(10, activation='softmax'))# 激活函数softmax
model.summary()
 # 训练
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
train_history = model.fit(x=X_train, y=Y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
score = model.evaluate(X_test,Y_test)
score

import matplotlib.pyplot as plt
 
def show_train_history(train_history, train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train History')
    plt.ylabel('train')
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
 
p = plt.figure(figsize=(15, 15))
a1 = p.add_subplot(2, 1, 1)
show_train_history(train_history, 'accuracy', 'val_accuracy') # 准确率
plt.show()
a2 = p.add_subplot(2, 1, 2)
show_train_history(train_history, 'loss', 'val_loss') # 缺失率
plt.show()

准确率:

缺失率:

5.模型评价

  • model.evaluate()
  • 交叉表与交叉矩阵
  • pandas.crosstab
  • seaborn.heatmap
import seaborn as sns

score = model.evaluate(X_test, y_test)
print('score', score)
y_pred = model.predict_classes(X_test) 
print('y_pred', y_pred[:10])

y_test1 = np.argmax(y_test, axis=1).reshape(-1) # 交叉表、交叉矩阵
y_true = np.array(y_test1)[0]

pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict']) # 交叉表对比预测数据和原数据
y_test1 = y_test1.tolist()[0] # 交叉矩阵
a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
df = pd.DataFrame(a) # 转为dataframe
sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')
plt.show()

 6.逻辑回归   https://www.cnblogs.com/MRJ1/p/13086177.html  

posted @ 2020-06-10 16:13  M.R.J  阅读(299)  评论(0编辑  收藏  举报