并发编程之多进程模块、进程间通讯 -3
多进程模块 multiprocessing
multiprocessing
进程的调用
1
from multiprocessing import Process
import time
def f(name):
time.sleep(1)
print('hello', name,time.ctime())
if __name__ == '__main__':
p_list=[]
for i in range(3):
p = Process(target=f, args=('tom',))
p_list.append(p)
p.start()
for i in p_list:
p.join()
print('end')
2
from multiprocessing import Process
import time
class MyProcess(Process):
def __init__(self):
super(MyProcess, self).__init__()
#self.name = name
def run(self):
time.sleep(1)
print ('hello', self.name,time.ctime())
if __name__ == '__main__':
p_list=[]
for i in range(3):
p = MyProcess()
p.start()
p_list.append(p)
for p in p_list:
p.join()
print('end')
from multiprocessing import Process
import os
import time
def info(title):
print("title:",title)
print('parent process:', os.getppid())
print('process id:', os.getpid())
def f(name):
info('function f')
print('hello', name)
if __name__ == '__main__':
info('main process line')
time.sleep(1)
print("------------------")
p = Process(target=info, args=('jerry',))
p.start()
p.join()
Process类
构造方法:
Process([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 进程名;
args/kwargs: 要传入方法的参数。
实例方法:
is_alive():返回进程是否在运行。
join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
start():进程准备就绪,等待CPU调度
run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
terminate():不管任务是否完成,立即停止工作进程
属性:
daemon:和线程的setDeamon功能一样
name:进程名字。
pid:进程号。
import time
from multiprocessing import Process
def foo(i):
time.sleep(1)
print (p.is_alive(),i,p.pid)
time.sleep(1)
if __name__ == '__main__':
p_list=[]
for i in range(10):
p = Process(target=foo, args=(i,))
#p.daemon=True
p_list.append(p)
for p in p_list:
p.start()
# for p in p_list:
# p.join()
print('main process end')
进程间通讯
进程对列Queue
from multiprocessing import Process, Queue
import queue
def f(q,n):
#q.put([123, 456, 'hello'])
q.put(n*n+1)
print("son process",id(q))
if __name__ == '__main__':
q = Queue() #try: q=queue.Queue()
print("main process",id(q))
for i in range(3):
p = Process(target=f, args=(q,i))
p.start()
print(q.get())
print(q.get())
print(q.get())
管道
from multiprocessing import Process, Pipe
def f(conn):
conn.send([12, {"name":"jerry"}, 'hello'])
response=conn.recv()
print("response",response)
conn.close()
print("q_ID2:",id(child_conn))
if __name__ == '__main__':
parent_conn, child_conn = Pipe()
print("q_ID1:",id(child_conn))
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv()) # prints "[42, None, 'hello']"
parent_conn.send("hello!")
p.join()
Managers
Queue和pipe只是实现了数据交互,并没实现数据共享,即一个进程去更改另一个进程的数据。
from multiprocessing import Process, Manager
def f(d, l,n):
d[n] = '1'
d['2'] = 2
d[0.25] = None
l.append(n)
#print(l)
print("son process:",id(d),id(l))
if __name__ == '__main__':
with Manager() as manager:
d = manager.dict()
l = manager.list(range(5))
print("main process:",id(d),id(l))
p_list = []
for i in range(10):
p = Process(target=f, args=(d,l,i))
p.start()
p_list.append(p)
for res in p_list:
res.join()
print(d)
print(l)
进程同步
from multiprocessing import Process, Lock
def f(l, i):
with l.acquire():
print('hello world %s'%i)
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()
进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
- apply
- apply_async
from multiprocessing import Process,Pool
import time,os
def Foo(i):
time.sleep(1)
print(i)
return i+100
def Bar(arg):
print(os.getpid())
print(os.getppid())
print('logger:',arg)
pool = Pool(5)
Bar(1)
print("----------------")
for i in range(10):
#pool.apply(func=Foo, args=(i,))
#pool.apply_async(func=Foo, args=(i,))
pool.apply_async(func=Foo, args=(i,),callback=Bar)
pool.close()
pool.join()
print('end')
参考:http://www.cnblogs.com/yuanchenqi/articles/6248025.html