【BZOJ2595】 [Wc2008]游览计划
BZOJ2595 [Wc2008]游览计划
Solution
考虑这是一个最小费用连通性的问题,既然大家都说这是什么斯坦纳树那就是的吧...
所以我们肯定可以这样设一个dp状态:
\(dp_{i,j,k}\)表示经过点(i,j)且现在连通性为\(k\)的最小费用.
有两种转移方程:
-
\(dp_{i,j,k}=dp_{i,j,s}+dp_{i,j,k-s}-a[i][j];\)
-
\(dp_{i,j,k}=dp_{x,y,k}+a[i][j]\)
这个还是比较显然?
发现后面那个东西很像最短路不是吗?
直接SPFA+dp转移一下就好了.
代码实现
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int N=20,Inf=1e9;
int bin[N],f[12][12][1024],vis[N][N];
int wa[4]={1,0,-1,0};
int lk[4]={0,1,0,-1};
struct node{
int a,b,c;
}pre[12][12][60010];
int a[N][N],n,m,b[N][N];
typedef pair<int,int> pii;
#define mp make_pair
queue<pii>Q;
void spfa(int s){
while(!Q.empty()){
pii now=Q.front();Q.pop();
int x=now.first,y=now.second;vis[x][y]=0;
for(int i=0;i<4;i++){
int xx=x+wa[i],yy=y+lk[i];
if(xx<1 || xx>n || yy<1 || yy>m)continue;
if(f[xx][yy][s]>f[x][y][s]+a[xx][yy]){
f[xx][yy][s]=f[x][y][s]+a[xx][yy];
pre[xx][yy][s]=(node){x,y,s};
if(!vis[xx][yy]){
vis[xx][yy]=1;Q.push(mp(xx,yy));
}
}
}
}
}
void dfs(int i,int j,int s)
{
if(i>=Inf || pre[i][j][s].c==0)return;
b[i][j]=1;node q=pre[i][j][s];
dfs(q.a,q.b,q.c);
if(q.a==i && q.b==j)dfs(i,j,s-q.c);
}
int main()
{
int K=0;
bin[0]=1;for(int i=1;i<20;i++)bin[i]=bin[i-1]<<1;
n=gi();m=gi();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
a[i][j]=gi();
if(!a[i][j])K++;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=0;k<bin[K];k++)
f[i][j][k]=pre[i][j][k].a=Inf;
K=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(!a[i][j])
f[i][j][bin[K]]=0,K++;
for(int s=1;s<bin[K];s++){
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
for(int ss=s&(s-1);ss;ss=s&(ss-1)){
int t=f[i][j][ss]+f[i][j][s-ss]-a[i][j];
if(t<f[i][j][s]){
f[i][j][s]=t;pre[i][j][s]=(node){i,j,ss};
}
}
if(f[i][j][s]<Inf){
Q.push(mp(i,j));vis[i][j]=1;
}
}
spfa(s);
}
int x=0,y;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++)
if(!a[i][j]){
x=i;y=j;break;
}
if(x)break;
}
dfs(x,y,bin[K]-1);
printf("%d\n",f[x][y][bin[K]-1]);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++)
if(!a[i][j])putchar('x');
else if(b[i][j])putchar('o');
else putchar('_');
putchar('\n');
}
return 0;
}