python数据分析与挖掘实战(财政收入影响因素分析及预测)
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from pylab import mpl data=pd.read_csv(r"C:\Users\Minori\Desktop\python实训\data.csv") print(data) description=[data.min(), data.max(), data.mean(), data.std()] # 依次计算最小,最大,均值,标准差 description=pd.DataFrame(description, index=['MIN', 'MAX', 'MEAN', 'STD']).T # 将结果存入数据框中 print("描述性统计结果: \n", np.round(description, 2)) #保留两位小数 # 相关性分析 corr = data.corr(method = 'pearson') # 计算相关系数矩阵 print('相关系数矩阵为:\n',np.round(corr, 2)) # 保留两位小数 # 绘制热力图 mpl.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.subplots(figsize=(10, 10)) # 设置画面大小 sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="RdBu_r", center=0.1) plt.title('相关性热力图') plt.show() plt.close
读取数据:
描述性统计分析:
求解原始数据的Pearson相关系数矩阵:
绘制相关热力图
Lasso回归选取关键属性:
import numpy as np import pandas as pd from sklearn.linear_model import Lasso data = pd.read_csv(r"C:\Users\Minori\Desktop\python实训\data.csv") # 读取数据 lasso = Lasso(1000) # 调用函数 lasso.fit(data.iloc[:, 0:13], data['y']) print('相关系数为:', np.round(lasso.coef_, 5)) # 输出结果,保留5位小数 print('相关系数非零个数为:', np.sum(lasso.coef_ != 0)) # 计算相关系数非零的个数 mask = lasso.coef_ != 0 # 返回一个相关系数是非为零的布尔数组 print('相关系数是否为零: ', mask) # mask = np.append(mask, True) new_reg_data = data.iloc[:, mask] new_reg_data.to_csv(r"C:\Users\Minori\Desktop\python实训\new_reg_data.csv") print('输出数据的维度为:', new_reg_data.shape) # 查看输出数据的维度
构建灰色预测模型并预测(GM11):
import sys sys.path.append("C:\\Users\\Minori\\Desktop\\python实训") # 设置路径 import numpy as np import pandas as pd from GM11 import GM11 inputfile1 = r"C:\Users\Minori\Desktop\python实训\new_reg_data.csv" # 输入的数据文件 inputfile2 = r"C:\Users\Minori\Desktop\python实训\data.csv" # 输入的数据文件 new_reg_data = pd.read_csv(inputfile1, index_col=0, header=0) # 读取经过特征选择后的数据 data = pd.read_csv(inputfile2, header=0) # 读取总的数据 new_reg_data.index = range(1994, 2014) new_reg_data.loc[2014] = None new_reg_data.loc[2015] = None new_reg_data.loc[2016] = None l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] for i in l: f = GM11(new_reg_data.loc[range(1994, 2014), i].values)[0] new_reg_data.loc[2014, i] = f(len(new_reg_data) - 1) # 2014年预测结果 new_reg_data.loc[2015, i] = f(len(new_reg_data)) # 2015年预测结果 new_reg_data.loc[2016, i] = f(len(new_reg_data) + 1) # 2016年预测结果 new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 outputfile = 'C:/Users/Minori/Desktop/python实训/new_reg_data_GM11.xlsx' # 灰色预测后保存的路径 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 y.extend([np.nan, np.nan, np.nan]) new_reg_data['y'] = y new_reg_data.to_excel(outputfile) # 结果输出 print('预测结果为:\n', new_reg_data.loc[2014:2016, ]) # 预测结果展示
构建支持向量回归预测模型(SVR):
import matplotlib.pyplot as plt import pandas as pd from sklearn.svm import LinearSVR inputfile = r'C:/Users/Minori/Desktop/python实训/new_reg_data_GM11.xlsx' # 灰色预测后保存的路径 data = pd.read_excel(inputfile, index_col=0, header=0) # 读取数据 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 # data.index = range(1994, 2014) data_train = data.loc[range(1994, 2014)].copy() # 取2014年前的数据建模 data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean) / data_std # 数据标准化 x_train = data_train[feature].values # 属性数据 y_train = data_train['y'].values # 标签数据 linearsvr = LinearSVR() # 调用LinearSVR()函数 linearsvr.fit(x_train, y_train) x = ((data[feature] - data_mean[feature]) / data_std[feature]).values # 预测,并还原结果。 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] data.to_excel('C:/Users/Minori/Desktop/python实训/new_reg_data_GM11_revenue.xlsx') print('真实值与预测值分别为:\n', data[['y', 'y_pred']]) fig = data[['y', 'y_pred']].plot(subplots=False, style=['b-o', 'r-*']) # 画出预测结果图 plt.title('3104') plt.show()