题目链接:
题意:
准考证号为\(n\)位数\(X_1X_2....X_n(0<=X_i<=9)\),你不希望准考证号上出现不吉利的数字。
不吉利数字\(A_1A_2...A_m(0<=A_i<=9)\)有\(m\)位,不出现是指\(X_1X_2...X_n\) 中没有恰好一段等于\(A_1A_2...A_m\)。\(A_1\) 和 \(X_1\) 都可以为\(0\)。
问你不出现不吉利数字的号码有多少种,输出模 \(mod\) 取余的结果。
\(n<=10^9,M<=20,mod<=1000\)。
题解:
对于这种间接的多模式匹配字符串+计数问题,我们可以用\(AC\)自动机 + \(dp\)。
\(dp[i][j]\)表示串长为 \(i\) , 匹配到了 \(AC\) 自动机的节点 \(j\),并且从来没有出现过完整的不吉利号码的方案数。
容易实现,\(dp\) 形式就是这样:
dp[0][0] = 1;
for(int i = 1; i <= n; i++) {
for(int j = 0; j <= sz; j++) {
for(int k = 0; k <= 9; k++) {
int v = ch[j][k];
if(End[v] == 0) {
dp[i][v] += dp[i - 1][j];
dp[i][v] %= mod;
}
}
}
}
int res = 0;
for(int i = 0; i <= sz; i++) {
res += dp[n][i];
res %= mod;
}
std::cout << "res = " << res << '\n';
但是\(n<=10^9\),时间复杂度会爆炸。
所以可以用矩阵快速幂来优化加速\(dp\)。
初始化矩阵\(tmp = [1,0,0]\),意思和 \(dp[0][0] = 1\) 的初始化一样。
将 \(x\) 节点与 \(x\) 的所有儿子节点 \(son\) 在转移矩阵 \(a\) 中都分别 \(a[x][son]+=1\)。
这样在矩阵乘法的转移时,可以把父亲的状态转移到儿子那里去。
最后答案即为 \(tmp * a ^ n\)。
建立失配指针时,需要注意:
如果一个数字的后缀是不吉利的(即fail指针指向不吉利数字的结尾节点), 那么这个数字一定也是不吉利的。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000100;
int mod;
// AC自动机有三个部分,分别是建树,获取失配指针和查询。
// Aho_Corasick_Automaton :可以简单的理解为将KMP放在Trie树上
// https://www.lydsy.com/JudgeOnline/problem.php?id=1009
int End[maxn];
int ch[maxn][26];
int fail[maxn];
int sz;
struct matrix
{
int m[26][26];
void init() {
memset(m,0,sizeof(m));
}
};
matrix operator *(matrix a, matrix b)
{
matrix ans;
ans.init();
for(int i = 1; i <= sz + 1; i++) {
for(int j = 1; j <= sz + 1; j ++) {
for(int k = 1; k <= sz + 1; k++) {
ans.m[i][j] += a.m[i][k] * b.m[k][j];
ans.m[i][j] %= mod;
}
}
}
return ans;
}
matrix qpower(matrix a, int b)
{
matrix ans;
ans.init();
for(int i = 1; i <= sz + 1; i++) {
ans.m[i][i] = 1;
}
while(b > 0)
{
if(b & 1) ans = ans * a;
b >>= 1;
a = a * a;
}
return ans;
}
void insert(string s)
{
int now = 0;
for(int i = 0; i < (int)s.size();i++) {
int c = s[i] - '0';
if(!ch[now][c])ch[now][c] = ++sz;
now = ch[now][c];
}
End[now] = 1;
}
void getfail()
{
queue<int>que;
for(int i = 0; i <= 9; i++) {
if(ch[0][i]) {
que.push(ch[0][i]);
fail[ch[0][i]] = 0;
}
}
while(!que.empty())
{
int u = que.front();
que.pop();
for(int i = 0; i <= 9; i++) {
int v = ch[u][i];
if(v)
{
fail[v] = ch[fail[u]][i];
// 注意如果一个数字的后缀是不吉利的(即fail指针指向不吉利数字的结尾节点)
// 那么这个数字一定也是不吉利的
End[v] |= End[ch[fail[u]][i]];
que.push(v);
}
else ch[u][i] = ch[fail[u]][i];
}
}
}
string s;
int n,m;
int dp[maxn][26];
// dp[i][j]表示串长为 i , 匹配到了 AC 自动机的节点 j,并且从来没有出现过完整的不吉利号码的方案数。
int main(int argc, char const *argv[]) {
// freopen("in.txt","r",stdin);
std::cin >> n >> m >> mod;
std::cin >> s;
insert(s);
getfail();
// dp[0][0] = 1;
// for(int i = 1; i <= n; i++) {
// for(int j = 0; j <= sz; j++) {
// for(int k = 0; k <= 9; k++) {
// int v = ch[j][k];
// if(End[v] == 0) {
// dp[i][v] += dp[i - 1][j];
// dp[i][v] %= mod;
// }
// }
// }
// }
// int res = 0;
// for(int i = 0; i <= sz; i++) {
// res += dp[n][i];
// res %= mod;
// }
// std::cout << "res = " << res << '\n';
matrix a,tmp;
a.init();
tmp.init();
tmp.m[1][1] = 1;
for(int i = 0; i <= sz; i++) {
for(int j = 0; j <= 9; j++) {
int v = ch[i][j];
if(End[v] == 0) {
a.m[i + 1][v + 1] += 1;
}
}
}
a = tmp * qpower(a,n);
int ans = 0;
for(int i = 1; i <= sz + 1; i++) {
ans += a.m[1][i];
ans %= mod;
}
std::cout << ans << '\n';
return 0;
}