2013 Multi-University Training Contest 1

HDU-4605 Magic Ball Game

题意:给定一颗以1为根的数,每个节点要么有两个孩子节点,要么没有孩子,每个节点有一个重量,现在从节点1往下放置一个小球,根据小球和节点的重量的不同球落下的轨迹是一个概率问题:

设球的重量为X,节点的重量为w[i]:
X = w[i],那么小球的运动将停止;
X < w[i],那么小球向左孩子下落的概率为1/2,向右孩子下落的概率为1/2;
X > w[i],那么小球向左落下概率为1/8,向右落下的概率为7/8。

现在有Q组询问,问小球的质量为X,落到v节点的概率为多大?

分析:最直接的办法就是直接暴力求解该题,从询问的叶子节点开始向上寻找,进行概率的累加,比赛的时候这样写,超时了。赛后听说是使用的树状数组维护路径状态进行求解。具体过程是在一个dfs的过程中,统计好当前位置的左路径的节点和右路径的节点,然后将小球的质量在树状数组中进行查找,计算出比小球质量较小的节点数以及比小球质量较大的节点数,累加概率即可。注意直接dfs会爆栈,使用编译器命令后解决该问题。

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

struct Node {
    int num, vertex, weight, ansx, ansy;
    Node(int _n, int _v, int _w, int _ansx, int _ansy) : \
    num(_n), vertex(_v), weight(_w), ansx(_ansx), ansy(_ansy) {}
    bool operator < (const Node &other) const {
        return num < other.num;
    }
};

const int N = 100005;
vector<Node>v[N], vv;
// first元素是询问的编号,pair的第一个元素是询问的 
int ch[N][2], w[N];
int n, m;
int num[N<<1], cnt;
map<int,int>mp;
int lbit[N<<1], rbit[N<<1]; // 因为询问和给定节点加起来上限是2*N个不同的数值 

inline int lowbit(int x) {
    return x & -x;
}

void add(int bit[], int x, int val) {
    for (int i = x; i <= cnt; i += lowbit(i)) {
        bit[i] += val;
    }
}

int sum(int bit[], int x) {
    int ret = 0;
    for (int i = x; i > 0; i -= lowbit(i)) {
        ret += bit[i];
    }
    return ret;
}

void dfs(int u) {
    for (int i = 0; i < (int)v[u].size(); ++i) {
        int weight = mp[v[u][i].weight];
        int lsum = sum(lbit, weight), rsum = sum(rbit, weight);
        int ltot = sum(lbit, cnt), rtot = sum(rbit, cnt);
        bool find = lsum && bool(lsum - sum(lbit, weight-1)) || rsum && bool(rsum - sum(rbit, weight-1));
        if (!find) {
            v[u][i].ansx = rsum;
            v[u][i].ansy = rtot-rsum + ltot-lsum + lsum*3 + rsum*3;
        } else {
            v[u][i].ansx = v[u][i].ansy = -1;
        }
    }
    if (ch[u][0]) {
        add(lbit, mp[w[u]], 1);
        dfs(ch[u][0]);
        add(lbit, mp[w[u]], -1);
    }
    if (ch[u][1]) {
        add(rbit, mp[w[u]], 1);
        dfs(ch[u][1]);
        add(rbit, mp[w[u]], -1);
    }
}

int main() {
    int T;
    scanf("%d", &T);
    while (T--) {
        scanf("%d", &n);
        cnt = 0, mp.clear(), vv.clear();
        memset(ch, 0, sizeof (ch));
        memset(lbit, 0, sizeof (lbit));
        memset(rbit, 0, sizeof (rbit));
        for (int i = 1; i <= n; ++i) {
            v[i].clear();
            scanf("%d", &w[i]);
            num[cnt++] = w[i]; // 将所有的要进行处理的节点重量以及询问的重量离散化 
        }
        scanf("%d", &m);
        int a, b, c;
        for (int i = 0; i < m; ++i) {
            scanf("%d %d %d", &a, &b, &c);
            ch[a][0] = b, ch[a][1] = c;
        }
        int Q;
        scanf("%d", &Q);
        for (int i = 0; i < Q; ++i) {
            scanf("%d %d", &a, &b);
            v[a].push_back(Node(i, a, b, 0, 0));
            num[cnt++] = b;
        }
        sort(num, num + cnt);
        cnt = unique(num, num + cnt) - num; // 离散化之后一共是cnt个元素 
        for (int i = 0; i < cnt; ++i) {
            mp[num[i]] = i + 1; // 这里加1是为了避免树状数组统计时无法处理0号元素 
        }
        dfs(1); // 题目中约定了1为根
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < (int)v[i].size(); ++j) {
                vv.push_back(v[i][j]);
            }
        }
        sort(vv.begin(), vv.end());
        for (int i = 0; i < (int)vv.size(); ++i) {
            printf(vv[i].ansx == -1 ? "0\n" : "%d %d\n", vv[i].ansx, vv[i].ansy);
        }
    }
    return 0;
}
View Code

 

HDU-4606 Occupy Cities

题意:给定N个城市,现在要从这些城市被外星人攻击还是什么的,要去提前占领这些城市,给出N个城市的二维坐标。同时,在地图上存在一些线段栅栏,一条线路不能够直接越过栅栏。现在有P个士兵,每个士兵可以空降到某一坐城市,士兵到达某座城市后,可以前往另外一座城市,在前往城市的路上需要一些食物消耗,每单位距离对应一个单位食物消耗,没新到一个城市,包裹将被重新填充满。所有士兵都配有一个包裹,包裹单位与食物单位。现在列出一个城市占领的先后序列,要求最多使用P个士兵按照这个序列前去占领,问最少的背包容量为多少?

分析:首先只要背包容量够大,那么一个士兵也是能够把所有的城市走遍的。这题一个直接的想法就是去二分枚举背包的容量,然后通过几何加之最短路处理将城市与城市之间的最短距离求出来,再然后根据背包容量构造子图,最后求一个有向无环图的最小路径覆盖数,比较最小路径覆盖数与P的关系即可。

#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
struct Point {
    double x, y;
    Point() {}
    Point(double _x, double _y) : x(_x), y(_y) {}
    void read() {
        scanf("%lf %lf", &x, &y);
    }
    double operator * (const Point &b) const {
        return x*b.y - y*b.x;
    }
    Point operator - (const Point &b) const {
        return Point(x-b.x, y-b.y);
    }
};

struct Line {
    Point s, e;
    Line() {}
    Line(Point _s, Point _e) : s(_s), e(_e) {}
};

const int N = 105;
const int M = 105;
const double eps = 1e-6;
int n, m, p, LIM;
Point pt[N*3];
int seq[N];
double mp[N*3][N*3];
char G[N][N];
char vis[N];
int match[N];

inline int sign(const double &x) {
    return (x < eps) ? -1 : (x > eps);
}

inline double dist(const Point &a, const Point &b) {
    return sqrt(1.0*(a.x-b.x)*(a.x-b.x) + 1.0*(a.y-b.y)*(a.y-b.y));
}

void floyd() {
    for (int k = 1; k <= LIM; ++k) {
        for (int i = 1; i <= LIM; ++i) {
            if (i == k) continue;
            for (int j = 1; j <= LIM; ++j)  {
                if (i == j || j == k) continue;
                if (sign(mp[i][k] + mp[k][j] - mp[i][j]) < 0) {
                    mp[i][j] = mp[i][k] + mp[k][j];
                }
            }
        }
    }
}

bool inter(const Line l1, const Line l2) {
    return
    max(l1.s.x, l1.e.x) > min(l2.s.x, l2.e.x) &&
    max(l2.s.x, l2.e.x) > min(l1.s.x, l1.e.x) &&
    max(l1.s.y, l1.e.y) > min(l2.s.y, l2.e.y) &&
    max(l2.s.y, l2.e.y) > min(l1.s.y, l1.e.y) &&
    sign((l2.s-l1.s)*(l1.e-l1.s)) * sign((l2.e-l1.s)*(l1.e-l1.s)) < 0 &&
    sign((l1.s-l2.s)*(l2.e-l2.s)) * sign((l1.e-l2.s)*(l2.e-l2.s)) < 0;
}

void build() {
    bool c;
    for (int i = 1; i <= LIM; ++i) {
        for (int j = i+1; j <= LIM; ++j) { // 枚举两个城市之间是否有边相连 
            c = false;
            for (int k = 1, d = 1; k <= m; ++k, d+=2) {
                if (i > n && k == (i-n+1)/2) continue;
                if (j > n && k == (j-n+1)/2) continue;
                if (inter(Line(pt[i], pt[j]), Line(pt[n+d], pt[n+d+1]))) {
                    c = true;
                    break;
                }
            }
            if (!c) { // 说明没有直线与两个城市之间的连线相交 
                mp[i][j] = mp[j][i] = dist(pt[i], pt[j]);
            }
        }
    }
    floyd();
}

bool path(int u) {
    for (int v = 1; v <= n; ++v) {
        if (vis[v] || !G[u][v]) continue;
        vis[v] = 1;
        if (!match[v] || path(match[v])) {
            match[v] = u;
            return true;
        }
    }
    return false;
}

bool Ac(double mid) {
    memset(G, 0, sizeof (G));
    memset(match, 0, sizeof (match));
    for (int i = 1; i <= n; ++i) { // 有向无环图构造完成 
        for (int j = i+1; j <= n; ++j) {
            if (sign(mid - mp[seq[i]][seq[j]]) >= 0) {
                G[seq[i]][seq[j]] = 1;
            }
        }
    }
    int cnt = 0;
    for (int i = 1; i <= n; ++i) {
        memset(vis, 0, sizeof (vis));
        if (path(i)) ++cnt;
    }
    return n-cnt <= p;
}

double bsearch(double l, double r) {
    double mid, ret;
    while (r - l >= eps) {
        mid = (l + r) / 2.0;
        if (Ac(mid)) {
            r = mid - eps;
            ret = mid;
        } else {
            l = mid + eps;
        }
    }
    return ret;
}

int main() {
    int T;
    scanf("%d", &T);
    while (T--) {
        scanf("%d %d %d", &n, &m, &p);
        LIM = n+2*m;
        for (int i = 1; i <= LIM; ++i) {
            for (int j = i; j <= LIM; ++j) {
                mp[i][j] = mp[j][i] = 1e20;
            }
        }
        for (int i = 1; i <= n; ++i) pt[i].read();
        for (int i = 1, j = 1; i <= m; ++i, j+=2) {
            pt[n+j].read(), pt[n+j+1].read();
        }
        for (int i = 1; i <= n; ++i) scanf("%d", &seq[i]);
        build();
        double ret = bsearch(0, 1e5);
        printf("%.2f\n", ret);
    }
    return 0;
}
View Code

 

 

posted @ 2013-07-24 21:14  沐阳  阅读(619)  评论(0编辑  收藏  举报