POJ-3436 ACM Computer Factory 网络流

  该题题义是这样的,有N台机器安排去组装电脑,每台电脑有P个零部件,一台可以出产的电脑必须要求每个部件都有。每台机器能够接受的本成品电脑不同,对于每个部件,输入数据给出了0(一定不能够在半成品上出现),1(一定要在上面出现),2(可以出现也可以不出现)。每台机器生产出来的半成品(或者成为了成品)的情况也有不同,对于每个部件0代表经过这个机器加工后,该号不见没有,相反,1代表有。

  由于每台机器的处理能力有限,所以这里要将点拆成边,点内的边赋值为产能,其他边均赋值为无穷大。对部件没有要求的机器为源点,对部件都有要求的机器为汇点。考虑好机器与机器之间的传递关系,建图后直接计算最大流,最后在遍历两两点之间的flow。

  代码如下:

#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <queue>
#define SP 0
#define T 2*N+1
#define INF 0x3fffffff
#define CP(x) (N+(x))
#define MAXN 110
using namespace std;

int P, N, cap[MAXN][MAXN], flow[MAXN][MAXN];
int c[MAXN], path[MAXN], MaxFlow;

struct Node
{
    int Q, S[15], D[15];
}e[55];

void init()
{
    MaxFlow = 0;
    memset(cap, 0, sizeof (cap));
    memset(flow, 0, sizeof (flow));
}

bool Start(int x)
{
    for (int i = 1; i <= P; ++i) {
        if (e[x].S[i] == 1) {
            return false;
        }
    }
    return true;
}

bool End(int x)
{
    for (int i = 1; i <= P; ++i) {
        if (e[x].D[i] == 0) {
            return false;
        }
    }
    return true;
}

bool OK(int x, int y)
{
    for (int i = 1; i <= P; ++i) {
        if (e[x].D[i] == 1 && (e[y].S[i] == 1 || e[y].S[i] == 2)) {
            continue;
        }
        else if (e[x].D[i] == 0 && (e[y].S[i] == 0 || e[y].S[i] == 2)) {
            continue;
        }
        else {
            return false;
        }
    }
    return true;
}
/*
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
*/
void bfs()
{
    int pos;
    bool finish = false;
    while (!finish) {
        memset(c, 0, sizeof (c));
        queue<int>q;
        c[SP] = INF;
        q.push(SP);
        while (!q.empty()) {
            if (c[T]) {
                break;
            }
            pos = q.front();
            q.pop();
            for (int i = 1; i <= T; ++i) {
                if (!c[i] && cap[pos][i] > flow[pos][i]) { 
                    c[i] = min(c[pos], cap[pos][i]-flow[pos][i]);
                    q.push(i);
                    path[i] = pos;
                }
            }   
        }
        if (c[T] == 0) {
            finish = true;
        }
        else {
            MaxFlow += c[T];
            pos = T;
            while (pos != SP) {
                flow[path[pos]][pos] += c[T];
                flow[pos][path[pos]] -= c[T];
                pos = path[pos];
            }
        }
    }
}

void print()
{
    int M = 0;
    for (int i = 1; i <= N; ++i) {
        for (int j = 1; j <= N; ++j) {
            if (flow[CP(i)][j] > 0) {
                ++M;
            }
        }
    }
    printf("%d %d\n", MaxFlow, M);
    for (int i = 1; i <= N; ++i) {
        for (int j = 1; j <= N; ++j) {
            if (flow[CP(i)][j] > 0) {
                printf("%d %d %d\n", i, j, flow[CP(i)][j]);
            }
        }
    } 
}

int main()
{
    while (scanf("%d %d", &P, &N) == 2) {
        init();
        for (int i = 1; i <= N; ++i) {
            scanf("%d", &e[i].Q);
            for (int j = 1; j <= P; ++j) {
                // 加工的条件
                scanf("%d", &e[i].S[j]);
            }
            for (int j = 1; j <= P; ++j) {
                // 出产的特性
                scanf("%d", &e[i].D[j]);
            }
        }
        for (int i = 1; i <= N; ++i) {
            if (Start(i)) {
                cap[SP][i] = INF;
            }
            if (End(i)) { 
                cap[CP(i)][T] = INF;
            }
            cap[i][CP(i)] = e[i].Q;
            for (int j = 1; j <= N; ++j) {
                if (OK(i, j)) {
                    cap[CP(i)][j] = INF;
                }
            }
        }
        bfs();
        print();
    }
    return 0;
}
posted @ 2012-07-03 12:49  沐阳  阅读(307)  评论(0编辑  收藏  举报