POJ-2728 Desert King 最优比例生成树 01分数规划/参数搜索

题意:给定N个三维平面点,每个点都有一个高度,每两个点之间的需要构边,边的距离由x,y坐标的欧几里得距离确定,边的花费有点的高度差即z值确定,现在问一个合理的生成树中,花费比上距离的最小值为多少?

解法:每一条边对应于一个高度差,设每条边的高度差为Hi,距离为Li,则要求找到一组边集满足,一如既往的,我们假设一个比例R使得有成立,那么对式子变形后有,得到这个式子后,我们就能够将边权进行修改,求一个最小生成树来判定是否满足<=0的要求。由于图是一个稠密图,所以kruskal算法超时了,改成prim后,priority_queue照样超时,最后改成最普通版的才Ac掉。

代码如下:

#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;

int N, idx;
double R;
const double INF = 1e12;

const double eps = 1e-6;
double D[1005][1005];
double H[1005][1005];

struct Node {
    int x, y, z;
    void read() {
        scanf("%d %d %d", &x, &y, &z);
    }
}p[1005];

inline int sign(double x) {
    return x < -eps ? -1 : x > eps ? 1 : 0;
}

double dist(int x1, int y1, int x2, int y2) {
    return sqrt(1.0*(x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}

double dis[1005];
char vis[1005];

struct cmp {
    bool operator () (const int &a, const int &b) {
        return sign(dis[a] - dis[b]) > 0;
    }
};

bool Ac(double R) {
    double sum = 0;
    memset(vis, 0, sizeof (vis));
    fill(dis, dis+N, 1e12);
    dis[0] = 0;
    for (int i = 0; i < N; ++i) {
        double Min = INF;
        int u;
        for (int i = 0; i < N; ++i) {
            if (!vis[i] && sign(Min-dis[i])>0) {
                u = i, Min = dis[i];    
            }
        }
        vis[u] = 1;
        sum += dis[u];
        for (int v = 0; v < N; ++v) {
            if (vis[v]) continue;
            double ct = H[u][v]-R*D[u][v];
            if (sign(dis[v]-ct) > 0) {
                dis[v] = ct;
            }
        }
    }
    return sign(sum) <= 0;
}

double bsearch(double l, double r) {
    double mid, ret;
    while (r - l >= eps) {
        mid = (l + r) / 2.0;
        if (Ac(mid)) {
            ret = mid;
            r = mid - eps;
        } else {
            l = mid + eps;    
        }
    }
    return ret;
}

int main() {
    while (scanf("%d", &N), N) {
        for (int i = 0; i < N; ++i) {
            p[i].read();
        }
        idx = 0;
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                H[i][j] = abs(p[i].z - p[j].z);
                D[i][j] = dist(p[i].x, p[i].y, p[j].x, p[j].y);
            }
        }
        printf("%.3f\n", bsearch(0, 1e7));
    }
    return 0;
}

 

posted @ 2013-05-30 22:03  沐阳  阅读(343)  评论(0编辑  收藏  举报