关于小范围整数N拆解成2的幂相加的个数
http://www.cnblogs.com/skyiv/archive/2010/03/27/1698550.html
关键点在于通过记录一个数被分解的方案中包不包含1来考虑。
得出结论有:
f[2*N+1] = f[2*N]
f[2*N] = f[2*N-1] + f[N]
f[2*N] = f[0]+f[1]+...+f[N]
代码如下:
#include <cstdlib> #include <cstring> #include <cstdio> #include <iostream> #include <algorithm> using namespace std; const int MaxN = 100; int f[MaxN+5]; int sum[MaxN+5]; int N; void init() { f[0] = 1, f[1] = 1, f[2] = 2; sum[0] = 1, sum[1] = 2, sum[2] = 5; for (int i = 3; i <= MaxN; i += 2) { f[i] = f[i-1] = sum[i/2]; sum[i-1] = sum[i-2] + f[i-1]; sum[i] = sum[i-1] + f[i]; } } int main() { init(); while (scanf("%d", &N) != EOF) { printf("%d\n", f[N]); } return 0; }