POJ-3295 Tautology 构造法

该题是在给定一系列的计算逻辑的基础上,询问一个表达式是否恒为真的问题,由于构成的表达式是一个以运算符开始的先序遍历的式子,所以可以利用递归进行求解。

什么是构造法呢?  

  1.对所讨论的对象能进行较为直观的描述;

  2.实现的具体性,就是不只是判明某种解的存在性,而且要实现具体求解。

代码如下:

#include <cstring>
#include <cstdio>
#include <cstdlib>
using namespace std;

char s[105];
int K[2][2] = {0, 0, 0, 1}, A[2][2] = {0, 1, 1, 1};
int N[2] = {1, 0}, C[2][2] = {1, 1, 0, 1}, E[2][2] = {1, 0, 0, 1};
int pos;

bool calc(int &x) // 引用只是为了是为了避免数据的复制 
{
    ++pos;
    switch (s[pos]) {
        // 这个括号中的运算有一个先后顺序,所以出现G++(从左至右)能多,但是C++(从右至左)不能过 
        case 'K': return K[calc(x)][calc(x)];
        case 'A': return A[calc(x)][calc(x)];
        case 'N': return N[calc(x)];
        case 'C': return C[calc(x)][calc(x)];
        case 'E': return E[calc(x)][calc(x)];
        case 'p': return x & 1;  // 分别取到压缩后的字节中的状态即可 
        case 'q': return x & (1 << 1);
        case 'r': return x & (1 << 2);
        case 's': return x & (1 << 3);
        case 't': return x & (1 << 4);
    }
}

int main()
{
    bool yes;
    while (scanf("%s", s), s[0] != '0') {
        yes = true;
        // 这里的一个for循环顶五个for循环
        for(int i = 0; i < 32 && yes; ++i) {
            pos = -1;
            if (!calc(i)) {
                yes = false;
            }
        }
        printf(yes ? "tautology\n" : "not\n");
    }
    return 0;    
}

 

 

posted @ 2012-06-29 16:10  沐阳  阅读(294)  评论(0编辑  收藏  举报