代码改变世界

【转载】IIC协议

2018-05-09 22:14  Lyp_02  阅读(150)  评论(0)    收藏  举报

来自 https://zhuanlan.zhihu.com/p/23456600
IIC 总线的特征:

  1. 只要求两条总线线路:一条串行数据线(SDA);一条串行时钟总线
  2. 每个接到总线上的器件都可以用软件设定地址,通过唯一的地址。总线上的不同设备会一直存在这一个主从关系,主设备可以工作在主发送和主接受模式。
  3. 这是一个真正的多主机总线,如果多个或更多主机同时初始化数据传输,可以通过冲突检测和仲裁检测来防止数据被破坏。

IIC 通信过程大概如下。首先,主设备发一个START信号,这个信号就像对所有其它设备喊:请大家注意!然后其它设备开始监听总线以准备接收数据。接着,主设备发送一个7位设备地址加一位的读写操作的数据帧。当所设备接收数据后,比对地址自己是否目标设备。如果比对不符,设备进入等待状态,等待STOP信号的来临;如果比对相符,设备会发送一个应答信号——ACKNOWLEDGE作回应。

当主设备收到应答后便开始传送或接收数据。数据帧大小为8位,尾随一位的应答信号。主设备发送数据,从设备应答;相反主设备接数据,主设备应答。当数据传送完毕,主设备发送一个STOP信号,向其它设备宣告释放总线,其它设备回到初始状态。

在物理实现上,SCL线和SDA线都是漏极开路(open-drain),通过上拉电阻外加一个电压源。当把线路接地时,线路为逻辑0,当释放线路,线路空闲时,线路为逻辑1。基于这些特性,IIC设备对总线的操作仅有“把线路接地”——输出逻辑0。

IIC总线设计只使用了两条线,但相当优雅地实现任意数目设备间无缝通信,堪称完美。我们设想一下,如果有两支设备同时向SCL线和SDA线发送信息会出现什么情况。

基于IIC总线的设计,线路上不可能出现电平冲突现象。如果一支设备发送逻辑0,其它发送逻辑1,那么线路看到的只有逻辑0。也就是说,如果出现电平冲突,发送逻辑0的始终是“赢家”。

总线的物理结构亦允许主设备在往总线写数据的同时读取数据。这样,任何设备都可以检测冲突的发生。当两支主设备竞争总线的时候,“赢家”并不知道竞争的发生,只有“输家”发现了冲突——当它写一个逻辑1,却读到0时——而退出竞争。

在IIC总线通信的过程中,参与通信的双方互相之间所传输的信息种类归纳如下。

主控器向被控器发送的信息种类有:启动信号、停止信号、7位地址码、读/写控制位、10位地址码、数据字节、重启动信号、应答信号、时钟脉冲。

被控器向主控器发送的信息种类有:应答信号、数据字节、时钟低电平。

下面对IIC总线通信过程中出现的几种信号状态和时序进行分析。

  ①总线空闲状态。

  IIC总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高。

  ②启动信号。

  在时钟线SCL保持高电平期间,数据线SDA上的电平被拉低(即负跳变),定义为IIC线总线的启动信号,它标志着一次数据传输的开始。

 启动信号是一种电平跳变时序信号,而不是一个电平信号。启动信号是由主控器主动建立的,在建立该信号之前IIC总线必须处于空闲状态。

③停止信号。

  在时钟线SCL保持高电平期间,数据线SDA被释放,使得SDA返回高电平(即正跳变),称为IIC总线的停止信号,它标志着一次数据传输的终止。

  停止信号也是一种电平跳变时序信号,而不是一个电平信号,停止信号也是由主控器主动建立的,建立该信号之后,IIC总线将返回空闲状态。

  ④数据位传送。

  在IIC总线上传送的每一位数据都有一个时钟脉冲相对应(或同步控制),即在SCL串行时钟的配合下,在SDA上逐位地串行传送每一位数据。

  进行数据传送时,在SCL呈现高电平期间,SDA上的电平必须保持稳定,低电平为数据0,高电平为数据1。

  只有在SCL为低电平期间,才允许SDA上的电平改变状态。逻辑0的电平为低电压,而逻辑1的电平取决于器件本身的正电源电压VDD(当使用独立电源时),如图2所示。

⑤应答信号。

  IIC总线上的所有数据都是以8位字节传送的,发送器每发送一个字节,就在时钟脉冲9期间释放数据线,由接收器反馈一个应答信号。

  应答信号为低电平时,规定为有效应答位(ACK简称应答位),表示接收器已经成功地接收了该字节;应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成功。

  对于反馈有效应答位ACK的要求是,接收器在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间为稳定的低电平。

  如果接收器是主控器,则在它收到最后一个字节后,发送一个NACK信号,以通知被控发送器结束数据发送,并释放SDA线,以便主控接收器发送一个停止信号P。

⑥插入等待时间。

  如果被控器需要延迟下一个数据字节开始传送的时间,则可以通过把时钟线SCL电平拉低并且保持,使主控器进入等待状态。

  一旦被控器释放时钟线,数据传输就得以继续下去,这样就使得被控器得到足够时间转移已经收到的数据字节,或者准备好即将发送的数据字节。

  带有CPU的被控器在对收到的地址字节做出应答之后,需要一定的时间去执行中断服务子程序,来分析或比较地址码,其间就把SCL线钳位在低电平上,直到处理妥当后才释放SCL线,进而使主控器继续后续数据字节的发送。

⑦重启动信号。

  在主控器控制总线期间完成了一次数据通信(发送或接收)之后,如果想继续占用总线再进行一次数据通信(发送或接收),而又不释放总线,就需要利用重启动Sr信号时序。

  重启动信号Sr既作为前一次数据传输的结束,又作为后一次数据传输的开始。利用重启动信号的优点是,在前后两次通信之间主控器不需要释放总线,这样就不会丢失总线的控制权,即不让其他主器件节点抢占总线。

总线冲突和总线仲裁

  假如在某IIC总线系统中存在两个主器件节点,分别记为主器件1和主器件2,其数据输出端分别为DATA1和DATA2,它们都有控制总线的能力,这就存在着发生总线冲突(即写冲突)的可能性。

  假设在某一瞬间两者相继向总线发出了启动信号,鉴于:IIC总线的“线与”特性,使得在数据线SDA上得到的信号波形是DATA1和DATA2两者相与的结果,该结果略微超前送出低电平的主器件1,其DATA1的下降沿被当做SDA的下降沿。

  在总线被启动后,主器件1企图发送数据“101……”,主器件2企图发送数据“100101……”。

  两个主器件在每次发出一个数据位的同时都要对自己输出端的信号电平进行抽检,只要抽检的结果与它们自己预期的电平相符,就会继续占用总线,总线控制权也就得不到裁定结果。

  主器件1的第3位期望发送“1”,也就是在第3个时钟周期内送出高电平。

  在该时钟周期的高电平期间,主器件1进行例行抽检时,结果检测到一个不相匹配的电平“0”,这时主器件1只好决定放弃总线控制杈;因此,主器件2就成了总线的惟一主宰者,总线控制权也就最终得出了裁定结果,从而实现了总线仲裁的功能。

  从以上总线仲裁的完成过程可以得出:仲裁过程主器件1和主器件2都不会丢失数据;各个主器件没有优先级别之分,总线控制权是随机裁定的,即使是抢先发送启动信号的主器件1最终也并没有得到控制杈。

  系统实际上遵循的是“低电平优先”的仲裁原则,将总线判给在数据线上先发送低电平的主器件,而其他发送高电平的主器件将失去总线控制权。

10位设备地址
任何IIC设备都有一个7位地址,理论上,现实中只能有127种不同的IIC设备。实际上,已有IIC的设备种类远远多于这个限制,在一条总线上出现相同的地址的IIC设备的概率相当高。为了突破这个限制,很多设备使用了双重地址——7位地址加引脚地址(external configuration pins)。IIC 标准也预知了这种限制,提出10位的地址方案。

10位的地址方案对 IIC协议的影响有两点:

§ 第一,地址帧为两个字节长,原来的是一个字节;

§ 第二,第一个字节前五位最高有效位用作10位地址标识,约定是“11110”。

在数字通信协议簇中,IIC常称为“小”协议,相对Ethernet, USB, SATA, PCI-Express等传输速度达数百上千兆字节每秒的总线。但是,我们不能忘记的是各种总线的用途是什么。“大”协议是用于系统外的整个系统之间通信的,“小”协议是用于系统内各芯片间的通信,没有迹象表明“大”协议有必要取代“小”协议。IIC的存在和流行体现了“够用就好”的哲学。回应文首,IIC如此的流行,它是任何一位嵌入式工程师必备的工具。

注:以上内容来自互联网搜索后整理的内容。侵删。