uva 12296 Pieces and Discs (Geometry)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3717
暴力计算几何。 用切割多边形的方法,将初始的矩形划分成若干个多边形,然后对于每一个圆判断有哪些多边形是与其相交的。面积为0的多边形忽略。
对于多边形与圆相交,要主意圆在多边形内的情况。
代码如下:
1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <vector> 5 #include <iostream> 6 #include <algorithm> 7 8 using namespace std; 9 10 const double EPS = 1e-8; 11 const double PI = acos(-1.0); 12 template <class T> T sqr(T x) { return x * x;} 13 struct Point { 14 double x, y; 15 Point() {} 16 Point(double x, double y) : x(x), y(y) {} 17 } ; 18 typedef Point Vec; 19 Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);} 20 Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);} 21 Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);} 22 Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);} 23 inline int sgn(double x) { return (x > EPS) - (x < -EPS);} 24 bool operator < (Point a, Point b) { return sgn(a.x - b.x) < 0 || sgn(a.x - b.x) == 0 && a.y < b.y;} 25 bool operator == (Point a, Point b) { return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;} 26 27 inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;} 28 inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;} 29 inline double dotDet(Point o, Point a, Point b) { return dotDet(a - o, b - o);} 30 inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);} 31 inline double vecLen(Vec x) { return sqrt(dotDet(x, x));} 32 inline Vec vecUnit(Vec x) { return x / vecLen(x);} 33 inline Vec normal(Vec x) { return Vec(-x.y, x.x) / vecLen(x);} 34 inline bool onSeg(Point x, Point a, Point b) { return sgn(crossDet(x, a, b)) == 0 && sgn(dotDet(x, a, b)) < 0;} 35 36 int segIntersect(Point a, Point c, Point b, Point d) { 37 Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d; 38 int a_bc = sgn(crossDet(v1, v2)); 39 int b_cd = sgn(crossDet(v2, v3)); 40 int c_da = sgn(crossDet(v3, v4)); 41 int d_ab = sgn(crossDet(v4, v1)); 42 // cout << a_bc << ' ' << b_cd << ' ' << c_da << ' ' << d_ab << endl; 43 if (a_bc * c_da > 0 && b_cd * d_ab > 0) return 1; 44 if (onSeg(b, a, c) && c_da) return 2; 45 if (onSeg(c, b, d) && d_ab) return 2; 46 if (onSeg(d, c, a) && a_bc) return 2; 47 if (onSeg(a, d, b) && b_cd) return 2; 48 return 0; 49 } 50 51 Point lineIntersect(Point P, Vec v, Point Q, Vec w) { 52 Vec u = P - Q; 53 double t = crossDet(w, u) / crossDet(v, w); 54 return P + v * t; 55 } 56 57 struct Poly { 58 vector<Point> pt; 59 Poly() { pt.clear();} 60 ~Poly() {} 61 Poly(vector<Point> &pt) : pt(pt) {} 62 Point operator [] (int x) const { return pt[x];} 63 int size() { return pt.size();} 64 double area() { 65 double ret = 0.0; 66 for (int i = 0, sz = pt.size(); i < sz; i++) { 67 ret += crossDet(pt[i], pt[(i + 1) % sz]); 68 } 69 return fabs(ret / 2.0); 70 } 71 } ; 72 73 Poly cutPoly(Poly &poly, Point a, Point b) { 74 Poly ret = Poly(); 75 int n = poly.size(); 76 for (int i = 0; i < n; i++) { 77 Point c = poly[i], d = poly[(i + 1) % n]; 78 if (sgn(crossDet(a, b, c)) >= 0) ret.pt.push_back(c); 79 if (sgn(crossDet(b - a, c - d)) != 0) { 80 Point ip = lineIntersect(a, b - a, c, d - c); 81 if (onSeg(ip, c, d)) ret.pt.push_back(ip); 82 } 83 } 84 return ret; 85 } 86 87 bool isIntersect(Point a, Point b, Poly &poly) { 88 for (int i = 0, sz = poly.size(); i < sz; i++) { 89 if (segIntersect(a, b, poly[i], poly[(i + 1) % sz])) return true; 90 } 91 return false; 92 } 93 94 struct Circle { 95 Point c; 96 double r; 97 Circle() {} 98 Circle(Point c, double r) : c(c), r(r) {} 99 } ; 100 101 inline bool inCircle(Point a, Circle c) { return vecLen(c.c - a) < c.r;} 102 bool lineCircleIntersect(Point s, Point t, Circle C, vector<Point> &sol) { 103 Vec dir = t - s, nor = normal(dir); 104 Point mid = lineIntersect(C.c, nor, s, dir); 105 double len = sqr(C.r) - dotDet(C.c - mid, C.c - mid); 106 if (sgn(len) < 0) return 0; 107 if (sgn(len) == 0) { 108 sol.push_back(mid); 109 return 1; 110 } 111 Vec dis = vecUnit(dir); 112 len = sqrt(len); 113 sol.push_back(mid + dis * len); 114 sol.push_back(mid - dis * len); 115 return 2; 116 } 117 118 bool segCircleIntersect(Point s, Point t, Circle C) { 119 vector<Point> tmp; 120 tmp.clear(); 121 if (lineCircleIntersect(s, t, C, tmp)) { 122 if (tmp.size() < 2) return false; 123 for (int i = 0, sz = tmp.size(); i < sz; i++) { 124 if (onSeg(tmp[i], s, t)) return true; 125 } 126 } 127 return false; 128 } 129 130 vector<Poly> cutPolies(Point s, Point t, vector<Poly> polies) { 131 vector<Poly> ret; 132 ret.clear(); 133 for (int i = 0, sz = polies.size(); i < sz; i++) { 134 Poly tmp; 135 tmp = cutPoly(polies[i], s, t); 136 if (tmp.size() >= 3 && tmp.area() > EPS) ret.push_back(tmp); 137 tmp = cutPoly(polies[i], t, s); 138 if (tmp.size() >= 3 && tmp.area() > EPS) ret.push_back(tmp); 139 } 140 return ret; 141 } 142 143 int ptInPoly(Point p, Poly &poly) { 144 int wn = 0, sz = poly.size(); 145 for (int i = 0; i < sz; i++) { 146 if (onSeg(p, poly[i], poly[(i + 1) % sz])) return -1; 147 int k = sgn(crossDet(poly[(i + 1) % sz] - poly[i], p - poly[i])); 148 int d1 = sgn(poly[i].y - p.y); 149 int d2 = sgn(poly[(i + 1) % sz].y - p.y); 150 if (k > 0 && d1 <= 0 && d2 > 0) wn++; 151 if (k < 0 && d2 <= 0 && d1 > 0) wn--; 152 } 153 if (wn != 0) return 1; 154 return 0; 155 } 156 157 bool circlePoly(Circle C, Poly &poly) { 158 int sz = poly.size(); 159 if (ptInPoly(C.c, poly)) return true; 160 // cout << "~~ " << sz << endl; 161 for (int i = 0; i < sz; i++) { 162 // cout << poly[i].x << ' ' << poly[i].y << endl; 163 if (inCircle(poly[i], C)) return true; 164 // cout << i << endl; 165 } 166 for (int i = 0; i < sz; i++) { 167 if (segCircleIntersect(poly[i], poly[(i + 1) % sz], C)) return true; 168 // cout << i << endl; 169 } 170 return false; 171 } 172 173 vector<double> circlePolies(Circle C, vector<Poly> &polies) { 174 vector<double> ret; 175 ret.clear(); 176 for (int i = 0, sz = polies.size(); i < sz; i++) { 177 if (circlePoly(C, polies[i])) ret.push_back(polies[i].area()); 178 } 179 return ret; 180 } 181 182 const double dir[4][2] = { {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}}; 183 184 int main() { 185 // freopen("in", "r", stdin); 186 // freopen("out", "w", stdout); 187 double L, W; 188 int n, m; 189 while (cin >> n >> m >> L >> W && (n + m + L + W > EPS)) { 190 vector<Poly> cur; 191 cur.push_back(Poly()); 192 for (int i = 0; i < 4; i++) { 193 cur[0].pt.push_back(Point(L * dir[i][0], W * dir[i][1])); 194 } 195 Point p[2]; 196 for (int i = 0; i < n; i++) { 197 for (int j = 0; j < 2; j++) { 198 cin >> p[j].x >> p[j].y; 199 } 200 cur = cutPolies(p[0], p[1], cur); 201 } 202 // cout << cur.size() << endl; 203 Circle C = Circle(); 204 for (int i = 0; i < m; i++) { 205 cin >> C.c.x >> C.c.y >> C.r; 206 vector<double> tmp = circlePolies(C, cur); 207 sort(tmp.begin(), tmp.end()); 208 cout << tmp.size(); 209 for (int j = 0, sz = tmp.size(); j < sz; j++) { 210 printf(" %.2f", tmp[j]); 211 } 212 cout << endl; 213 } 214 cout << endl; 215 } 216 return 0; 217 }
——written by Lyon