hdu 1140 War on Weather (3D-Geometry)
简单的三维几何题,对于每一个点,搜索是否存在卫星直接可见,也就是直线与球体是否交于较近的点。其中,套用的主要是直线与平面交点的函数。
模板以及代码:
1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <set> 5 #include <vector> 6 #include <iostream> 7 #include <algorithm> 8 9 using namespace std; 10 11 // Point class 12 struct Point { 13 double x, y; 14 Point() {} 15 Point(double x, double y) : x(x), y(y) {} 16 } ; 17 template<class T> T sqr(T x) { return x * x;} 18 inline double ptDis(Point a, Point b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));} 19 20 // basic calculations 21 typedef Point Vec; 22 Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);} 23 Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);} 24 Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);} 25 Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);} 26 27 const double EPS = 1e-8; 28 const double PI = acos(-1.0); 29 inline int sgn(double x) { return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);} 30 bool operator < (Point a, Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y);} 31 bool operator == (Point a, Point b) { return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;} 32 33 inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;} 34 inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;} 35 inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);} 36 inline double vecLen(Vec x) { return sqrt(dotDet(x, x));} 37 inline double toRad(double deg) { return deg / 180.0 * PI;} 38 inline double angle(Vec v) { return atan2(v.y, v.x);} 39 inline double angle(Vec a, Vec b) { return acos(dotDet(a, b) / vecLen(a) / vecLen(b));} 40 inline double triArea(Point a, Point b, Point c) { return fabs(crossDet(b - a, c - a));} 41 inline Vec vecUnit(Vec x) { return x / vecLen(x);} 42 inline Vec rotate(Vec x, double rad) { return Vec(x.x * cos(rad) - x.y * sin(rad), x.x * sin(rad) + x.y * cos(rad));} 43 Vec normal(Vec x) { 44 double len = vecLen(x); 45 return Vec(- x.y / len, x.x / len); 46 } 47 48 // Line class 49 struct Line { 50 Point s, t; 51 Line() {} 52 Line(Point s, Point t) : s(s), t(t) {} 53 Point point(double x) { 54 return s + (t - s) * x; 55 } 56 Line move(double x) { // while x > 0 move to (s->t)'s left 57 Vec nor = normal(t - s); 58 nor = nor * x; 59 return Line(s + nor, t + nor); 60 } 61 Vec vec() { return t - s;} 62 } ; 63 typedef Line Seg; 64 65 inline bool onLine(Point x, Point a, Point b) { return sgn(crossDet(a - x, b - x)) == 0;} 66 inline bool onLine(Point x, Line l) { return onLine(x, l.s, l.t);} 67 inline bool onSeg(Point x, Point a, Point b) { return sgn(crossDet(a - x, b - x)) == 0 && sgn(dotDet(a - x, b - x)) < 0;} 68 inline bool onSeg(Point x, Seg s) { return onSeg(x, s.s, s.t);} 69 70 // 0 : not intersect 71 // 1 : proper intersect 72 // 2 : improper intersect 73 int segIntersect(Point a, Point c, Point b, Point d) { 74 Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d; 75 int a_bc = sgn(crossDet(v1, v2)); 76 int b_cd = sgn(crossDet(v2, v3)); 77 int c_da = sgn(crossDet(v3, v4)); 78 int d_ab = sgn(crossDet(v4, v1)); 79 if (a_bc * c_da > 0 && b_cd * d_ab > 0) return 1; 80 if (onSeg(b, a, c) && c_da) return 2; 81 if (onSeg(c, b, d) && d_ab) return 2; 82 if (onSeg(d, c, a) && a_bc) return 2; 83 if (onSeg(a, d, b) && b_cd) return 2; 84 return 0; 85 } 86 inline int segIntersect(Seg a, Seg b) { return segIntersect(a.s, a.t, b.s, b.t);} 87 88 // point of the intersection of 2 lines 89 Point lineIntersect(Point P, Vec v, Point Q, Vec w) { 90 Vec u = P - Q; 91 double t = crossDet(w, u) / crossDet(v, w); 92 return P + v * t; 93 } 94 inline Point lineIntersect(Line a, Line b) { return lineIntersect(a.s, a.t - a.s, b.s, b.t - b.s);} 95 96 // Warning: This is a DIRECTED Distance!!! 97 double pt2Line(Point x, Point a, Point b) { 98 Vec v1 = b - a, v2 = x - a; 99 return crossDet(v1, v2) / vecLen(v1); 100 } 101 inline double pt2Line(Point x, Line L) { return pt2Line(x, L.s, L.t);} 102 103 double pt2Seg(Point x, Point a, Point b) { 104 if (a == b) return vecLen(x - a); 105 Vec v1 = b - a, v2 = x - a, v3 = x - b; 106 if (sgn(dotDet(v1, v2)) < 0) return vecLen(v2); 107 if (sgn(dotDet(v1, v3)) > 0) return vecLen(v3); 108 return fabs(crossDet(v1, v2)) / vecLen(v1); 109 } 110 inline double pt2Seg(Point x, Seg s) { return pt2Seg(x, s.s, s.t);} 111 112 Point ptOnLine(Point p, Point a, Point b) { 113 Vec v = b - a; 114 return a + v * (dotDet(v, p - a) / dotDet(v, v)); 115 } 116 inline Point ptOnLine(Point p, Line x) { return ptOnLine(p, x.s, x.t);} 117 118 // Polygon class 119 struct Poly { 120 vector<Point> pt; 121 Poly() { pt.clear();} 122 ~Poly() {} 123 Poly(vector<Point> pt) : pt(pt) {} 124 Point operator [] (int x) const { return pt[x];} 125 int size() { return pt.size();} 126 double area() { 127 double ret = 0.0; 128 int sz = pt.size(); 129 for (int i = 1; i < sz; i++) { 130 ret += crossDet(pt[i], pt[i - 1]); 131 } 132 return fabs(ret / 2.0); 133 } 134 } ; 135 136 // Circle class 137 struct Circle { 138 Point c; 139 double r; 140 Circle() {} 141 Circle(Point c, double r) : c(c), r(r) {} 142 Point point(double a) { 143 return Point(c.x + cos(a) * r, c.y + sin(a) * r); 144 } 145 } ; 146 147 inline bool ptOnCircle(Point x, Circle c) { return sgn(ptDis(c.c, x) - c.r) == 0;} 148 149 // Cirlce operations 150 int lineCircleIntersect(Line L, Circle C, double &t1, double &t2, vector<Point> &sol) { 151 double a = L.s.x, b = L.t.x - C.c.x, c = L.s.y, d = L.t.y - C.c.y; 152 double e = sqr(a) + sqr(c), f = 2 * (a * b + c * d), g = sqr(b) + sqr(d) - sqr(C.r); 153 double delta = sqr(f) - 4.0 * e * g; 154 if (sgn(delta) < 0) return 0; 155 if (sgn(delta) == 0) { 156 t1 = t2 = -f / (2.0 * e); 157 sol.push_back(L.point(t1)); 158 return 1; 159 } 160 t1 = (-f - sqrt(delta)) / (2.0 * e); 161 sol.push_back(L.point(t1)); 162 t2 = (-f + sqrt(delta)) / (2.0 * e); 163 sol.push_back(L.point(t2)); 164 return 2; 165 } 166 167 int lineCircleIntersect(Line L, Circle C, vector<Point> &sol) { 168 Vec dir = L.t - L.s, nor = normal(dir); 169 Point mid = lineIntersect(C.c, nor, L.s, dir); 170 double len = sqr(C.r) - sqr(ptDis(C.c, mid)); 171 if (sgn(len) < 0) return 0; 172 if (sgn(len) == 0) { 173 sol.push_back(mid); 174 return 1; 175 } 176 Vec dis = vecUnit(dir); 177 len = sqrt(len); 178 sol.push_back(mid + dis * len); 179 sol.push_back(mid - dis * len); 180 return 2; 181 } 182 183 // -1 : coincide 184 int circleCircleIntersect(Circle C1, Circle C2, vector<Point> &sol) { 185 double d = vecLen(C1.c - C2.c); 186 if (sgn(d) == 0) { 187 if (sgn(C1.r - C2.r) == 0) { 188 return -1; 189 } 190 return 0; 191 } 192 if (sgn(C1.r + C2.r - d) < 0) return 0; 193 if (sgn(fabs(C1.r - C2.r) - d) > 0) return 0; 194 double a = angle(C2.c - C1.c); 195 double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d)); 196 Point p1 = C1.point(a - da), p2 = C1.point(a + da); 197 sol.push_back(p1); 198 if (p1 == p2) return 1; 199 sol.push_back(p2); 200 return 2; 201 } 202 203 void circleCircleIntersect(Circle C1, Circle C2, vector<double> &sol) { 204 double d = vecLen(C1.c - C2.c); 205 if (sgn(d) == 0) return ; 206 if (sgn(C1.r + C2.r - d) < 0) return ; 207 if (sgn(fabs(C1.r - C2.r) - d) > 0) return ; 208 double a = angle(C2.c - C1.c); 209 double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d)); 210 sol.push_back(a - da); 211 sol.push_back(a + da); 212 } 213 214 int tangent(Point p, Circle C, vector<Vec> &sol) { 215 Vec u = C.c - p; 216 double dist = vecLen(u); 217 if (dist < C.r) return 0; 218 if (sgn(dist - C.r) == 0) { 219 sol.push_back(rotate(u, PI / 2.0)); 220 return 1; 221 } 222 double ang = asin(C.r / dist); 223 sol.push_back(rotate(u, -ang)); 224 sol.push_back(rotate(u, ang)); 225 return 2; 226 } 227 228 // ptA : points of tangency on circle A 229 // ptB : points of tangency on circle B 230 int tangent(Circle A, Circle B, vector<Point> &ptA, vector<Point> &ptB) { 231 if (A.r < B.r) { 232 swap(A, B); 233 swap(ptA, ptB); 234 } 235 double d2 = sqr(A.c.x - B.c.x) + sqr(A.c.y - B.c.y); 236 double rdiff = A.r - B.r, rsum = A.r + B.r; 237 if (d2 < sqr(rdiff)) return 0; 238 double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x); 239 if (d2 == 0 && A.r == B.r) return -1; 240 if (d2 == sqr(rdiff)) { 241 ptA.push_back(A.point(base)); 242 ptB.push_back(B.point(base)); 243 return 1; 244 } 245 double ang = acos((A.r - B.r) / sqrt(d2)); 246 ptA.push_back(A.point(base + ang)); 247 ptB.push_back(B.point(base + ang)); 248 ptA.push_back(A.point(base - ang)); 249 ptB.push_back(B.point(base - ang)); 250 if (d2 == sqr(rsum)) { 251 ptA.push_back(A.point(base)); 252 ptB.push_back(B.point(PI + base)); 253 return 3; 254 } else if (d2 > sqr(rsum)) { 255 ang = acos((A.r + B.r) / sqrt(d2)); 256 ptA.push_back(A.point(base + ang)); 257 ptB.push_back(B.point(PI + base + ang)); 258 ptA.push_back(A.point(base - ang)); 259 ptB.push_back(B.point(PI + base - ang)); 260 return 4; 261 } 262 return 2; 263 } 264 265 // -1 : onside 266 // 0 : outside 267 // 1 : inside 268 int ptInPoly(Point p, Poly &poly) { 269 int wn = 0, sz = poly.size(); 270 for (int i = 0; i < sz; i++) { 271 if (onSeg(p, poly[i], poly[(i + 1) % sz])) return -1; 272 int k = sgn(crossDet(poly[(i + 1) % sz] - poly[i], p - poly[i])); 273 int d1 = sgn(poly[i].y - p.y); 274 int d2 = sgn(poly[(i + 1) % sz].y - p.y); 275 if (k > 0 && d1 <= 0 && d2 > 0) wn++; 276 if (k < 0 && d2 <= 0 && d1 > 0) wn--; 277 } 278 if (wn != 0) return 1; 279 return 0; 280 } 281 282 // if DO NOT need a high precision 283 /* 284 int ptInPoly(Point p, Poly poly) { 285 int sz = poly.size(); 286 double ang = 0.0, tmp; 287 for (int i = 0; i < sz; i++) { 288 if (onSeg(p, poly[i], poly[(i + 1) % sz])) return -1; 289 tmp = angle(poly[i] - p) - angle(poly[(i + 1) % sz] - p) + PI; 290 ang += tmp - floor(tmp / (2.0 * PI)) * 2.0 * PI - PI; 291 } 292 if (sgn(ang - PI) == 0) return -1; 293 if (sgn(ang) == 0) return 0; 294 return 1; 295 } 296 */ 297 298 299 // Convex Hull algorithms 300 // return the number of points in convex hull 301 302 // andwer's algorithm 303 // if DO NOT want the points on the side of convex hull, change all "<" into "<=" 304 int andrew(Point *pt, int n, Point *ch) { 305 sort(pt, pt + n); 306 int m = 0; 307 for (int i = 0; i < n; i++) { 308 while (m > 1 && crossDet(ch[m - 1] - ch[m - 2], pt[i] - ch[m - 2]) <= 0) m--; 309 ch[m++] = pt[i]; 310 } 311 int k = m; 312 for (int i = n - 2; i >= 0; i--) { 313 while (m > k && crossDet(ch[m - 1] - ch[m - 2], pt[i] - ch[m - 2]) <= 0) m--; 314 ch[m++] = pt[i]; 315 } 316 if (n > 1) m--; 317 return m; 318 } 319 320 // graham's algorithm 321 // if DO NOT want the points on the side of convex hull, change all "<=" into "<" 322 Point origin; 323 inline bool cmpAng(Point p1, Point p2) { return crossDet(origin, p1, p2) > 0;} 324 inline bool cmpDis(Point p1, Point p2) { return ptDis(p1, origin) > ptDis(p2, origin);} 325 326 void removePt(Point *pt, int &n) { 327 int idx = 1; 328 for (int i = 2; i < n; i++) { 329 if (sgn(crossDet(origin, pt[i], pt[idx]))) pt[++idx] = pt[i]; 330 else if (cmpDis(pt[i], pt[idx])) pt[idx] = pt[i]; 331 } 332 n = idx + 1; 333 } 334 335 int graham(Point *pt, int n, Point *ch) { 336 int top = -1; 337 for (int i = 1; i < n; i++) { 338 if (pt[i].y < pt[0].y || (pt[i].y == pt[0].y && pt[i].x < pt[0].x)) swap(pt[i], pt[0]); 339 } 340 origin = pt[0]; 341 sort(pt + 1, pt + n, cmpAng); 342 removePt(pt, n); 343 for (int i = 0; i < n; i++) { 344 if (i >= 2) { 345 while (!(crossDet(ch[top - 1], pt[i], ch[top]) <= 0)) top--; 346 } 347 ch[++top] = pt[i]; 348 } 349 return top + 1; 350 } 351 352 353 // Half Plane 354 // The intersected area is always a convex polygon. 355 // Directed Line class 356 struct DLine { 357 Point p; 358 Vec v; 359 double ang; 360 DLine() {} 361 DLine(Point p, Vec v) : p(p), v(v) { ang = atan2(v.y, v.x);} 362 bool operator < (const DLine &L) const { return ang < L.ang;} 363 DLine move(double x) { // while x > 0 move to v's left 364 Vec nor = normal(v); 365 nor = nor * x; 366 return DLine(p + nor, v); 367 } 368 369 } ; 370 371 Poly cutPoly(Poly &poly, Point a, Point b) { 372 Poly ret = Poly(); 373 int n = poly.size(); 374 for (int i = 0; i < n; i++) { 375 Point c = poly[i], d = poly[(i + 1) % n]; 376 if (sgn(crossDet(b - a, c - a)) >= 0) ret.pt.push_back(c); 377 if (sgn(crossDet(b - a, c - d)) != 0) { 378 Point ip = lineIntersect(a, b - a, c, d - c); 379 if (onSeg(ip, c, d)) ret.pt.push_back(ip); 380 } 381 } 382 return ret; 383 } 384 inline Poly cutPoly(Poly &poly, DLine L) { return cutPoly(poly, L.p, L.p + L.v);} 385 386 inline bool onLeft(DLine L, Point p) { return crossDet(L.v, p - L.p) > 0;} 387 Point dLineIntersect(DLine a, DLine b) { 388 Vec u = a.p - b.p; 389 double t = crossDet(b.v, u) / crossDet(a.v, b.v); 390 return a.p + a.v * t; 391 } 392 393 Poly halfPlane(DLine *L, int n) { 394 Poly ret = Poly(); 395 sort(L, L + n); 396 int fi, la; 397 Point *p = new Point[n]; 398 DLine *q = new DLine[n]; 399 q[fi = la = 0] = L[0]; 400 for (int i = 1; i < n; i++) { 401 while (fi < la && !onLeft(L[i], p[la - 1])) la--; 402 while (fi < la && !onLeft(L[i], p[fi])) fi++; 403 q[++la] = L[i]; 404 if (fabs(crossDet(q[la].v, q[la - 1].v)) < EPS) { 405 la--; 406 if (onLeft(q[la], L[i].p)) q[la] = L[i]; 407 } 408 if (fi < la) p[la - 1] = dLineIntersect(q[la - 1], q[la]); 409 } 410 while (fi < la && !onLeft(q[fi], p[la - 1])) la--; 411 if (la - fi <= 1) return ret; 412 p[la] = dLineIntersect(q[la], q[fi]); 413 for (int i = fi; i <= la; i++) ret.pt.push_back(p[i]); 414 return ret; 415 } 416 417 418 // 3D Geometry 419 void getCoor(double R, double lat, double lng, double &x, double &y, double &z) { 420 lat = toRad(lat); 421 lng = toRad(lng); 422 x = R * cos(lat) * cos(lng); 423 y = R * cos(lat) * sin(lng); 424 z = R * sin(lat); 425 } 426 427 struct Point3 { 428 double x, y, z; 429 Point3() {} 430 Point3(double x, double y, double z) : x(x), y(y), z(z) {} 431 } ; 432 typedef Point3 Vec3; 433 434 Vec3 operator + (Vec3 a, Vec3 b) { return Vec3(a.x + b.x, a.y + b.y, a.z + b.z);} 435 Vec3 operator - (Vec3 a, Vec3 b) { return Vec3(a.x - b.x, a.y - b.y, a.z - b.z);} 436 Vec3 operator * (Vec3 a, double p) { return Vec3(a.x * p, a.y * p, a.z * p);} 437 Vec3 operator / (Vec3 a, double p) { return Vec3(a.x / p, a.y / p, a.z / p);} 438 439 bool operator < (Point3 a, Point3 b) { 440 if (a.x != b.x) return a.x < b.x; 441 if (a.y != b.y) return a.y < b.y; 442 return a.z < b.z; 443 } 444 bool operator == (Point3 a, Point3 b) { return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0 && sgn(a.z - b.z) == 0;} 445 446 inline double dotDet(Vec3 a, Vec3 b) { return a.x * b.x + a.y * b.y + a.z * b.z;} 447 inline Vec3 crossDet(Vec3 a, Vec3 b) { return Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);} 448 inline double vecLen(Vec3 x) { return sqrt(dotDet(x, x));} 449 inline double angle(Vec3 a, Vec3 b) { return acos(dotDet(a, b) / vecLen(a) / vecLen(b));} 450 inline double ptDis(Point3 a, Point3 b) { return sqrt(vecLen(a - b));} 451 inline double triArea(Point3 a, Point3 b, Point3 c) { return vecLen(crossDet(b - a, c - a));} 452 Vec3 vecUnit(Vec3 x) { return x / vecLen(x);} 453 454 struct Plane { 455 Point3 p; 456 Vec3 n; 457 Plane() {} 458 Plane(Point3 p, Vec3 n) : p(p), n(n) {} 459 } ; 460 461 // Warning: This is a DIRECTED Distance!!! 462 inline double pt2Plane(Point3 p, Point3 p0, Vec3 n) { return dotDet(p - p0, n) / vecLen(n);} 463 inline double pt2Plane(Point3 p, Plane P) { return pt2Plane(p, P.p, P.n);} 464 // get projection on plane 465 inline Point3 ptOnPlane(Point3 p, Point3 p0, Vec3 n) { return p + n * pt2Plane(p, p0, n);} 466 inline Point3 ptOnPlane(Point3 p, Plane P) { return ptOnPlane(p, P.p, P.n);} 467 inline bool ptInPlane(Point3 p, Point3 p0, Vec3 n) { return sgn(dotDet(p - p0, n)) == 0;} 468 inline bool ptInPlane(Point3 p, Plane P) { return ptInPlane(p, P.p, P.n);} 469 470 struct Line3 { 471 Point3 s, t; 472 Line3() {} 473 Line3(Point3 s, Point3 t) : s(s), t(t) {} 474 Vec3 vec() { return t - s;} 475 } ; 476 typedef Line3 Seg3; 477 478 double pt2Line(Point3 p, Point3 a, Point3 b) { 479 Vec3 v1 = b - a, v2 = p - a; 480 return vecLen(crossDet(v1, v2)) / vecLen(v1); 481 } 482 inline double pt2Line(Point3 p, Line3 l) { return pt2Line(p, l.s, l.t);} 483 484 double pt2Seg(Point3 p, Point3 a, Point3 b) { 485 if (a == b) return vecLen(p - a); 486 Vec3 v1 = b - a, v2 = p - a, v3 = p - b; 487 if (sgn(dotDet(v1, v2)) < 0) return vecLen(v2); 488 else if (sgn(dotDet(v1, v3)) > 0) return vecLen(v3); 489 else return vecLen(crossDet(v1, v2)) / vecLen(v1); 490 } 491 inline double pt2Seg(Point3 p, Seg3 s) { return pt2Seg(p, s.s, s.t);} 492 493 struct Tri { 494 Point3 a, b, c; 495 Tri() {} 496 Tri(Point3 a, Point3 b, Point3 c) : a(a), b(b), c(c) {} 497 } ; 498 499 bool ptInTri(Point3 p, Point3 a, Point3 b, Point3 c) { 500 double area1 = triArea(p, a, b); 501 double area2 = triArea(p, b, c); 502 double area3 = triArea(p, c, a); 503 double area = triArea(a, b, c); 504 return sgn(area1 = area2 + area3 - area) == 0; 505 } 506 inline bool ptInTri(Point3 p, Tri t) { return ptInTri(p, t.a, t.b, t.c);} 507 508 // 0 : not intersect 509 // 1 : intersect at only 1 point 510 // 2 : line in plane 511 int linePlaneIntersect(Point3 s, Point3 t, Point3 p0, Vec3 n, Point3 &x) { 512 double res1 = dotDet(n, p0 - s); 513 double res2 = dotDet(n, t - s); 514 if (sgn(res2) == 0) { 515 if (ptInPlane(s, p0, n)) return 2; 516 return 0; 517 } 518 x = s + (t - s) * (res1 / res2); 519 // use general form : a * x + b * y + c * z + d = 0 520 // Vec3 v = s - t; 521 // double k = (a * s.x + b * s.y + c * s.z + d) / (a * v.x + b * v.y + c * v.z); 522 // x = s + (t - s) * k; 523 return 1; 524 } 525 inline int linePlaneIntersect(Line3 l, Plane p, Point3 &x) { return linePlaneIntersect(l.s, l.t, p.p, p.n, x);} 526 527 Point3 ptOnLine(Point3 p, Line3 L) { 528 Plane P = Plane(p, L.t - L.s); 529 Point3 ret; 530 if (linePlaneIntersect(L, P, ret) != 1) puts("Shit!"); 531 return ret; 532 } 533 534 // ¡÷abc intersect with segment st 535 bool triSegIntersect(Point3 a, Point3 b, Point3 c, Point3 s, Point3 t, Point3 &x) { 536 Vec3 n = crossDet(b - a, c - a); 537 if (sgn(dotDet(n, t - s)) == 0) return false; 538 else { 539 double k = dotDet(n, a - s) / dotDet(n, t - s); 540 if (sgn(k) < 0 || sgn(k - 1) > 0) return false; 541 x = s + (t - s) * k; 542 return ptInTri(x, a, b, c); 543 } 544 } 545 inline bool triSegIntersect(Tri t, Line3 l, Point3 &x) { return triSegIntersect(t.a, t.b, t.c, l.s, l.t, x);} 546 547 // Warning: This is a DIRECTED Volume!!! 548 inline double tetraVol(Point3 a, Point3 b, Point3 c, Point3 p) { return dotDet(p - a, crossDet(b - a, c - a)) / 6.0;} 549 inline double tetraVol(Tri t, Point3 p) { return tetraVol(t.a, t.b, t.c, p);} 550 551 struct Ball { 552 Point3 c; 553 double r; 554 Ball() {} 555 Ball(Point3 c, double r) : c(c), r(r) {} 556 } ; 557 558 int lineBallIntersect(Ball B, Line3 L, vector<Point3> &sol) { 559 double dis = pt2Line(B.c, L); 560 if (dis > B.r) return 0; 561 Point3 ip = ptOnLine(B.c, L); 562 if (sgn(dis - B.r)) { 563 double ds = sqrt(sqr(B.r) - sqr(dis)); 564 sol.push_back(ip + vecUnit(L.t - L.s) * ds); 565 sol.push_back(ip - vecUnit(L.t - L.s) * ds); 566 return 2; 567 } else { 568 sol.push_back(ip); 569 return 1; 570 } 571 } 572 573 /****************** template above *******************/ 574 575 const int N = 111; 576 const double FINF = 1e100; 577 Point3 sate[N]; 578 579 bool test(Point3 x, Point3 st) { 580 vector<Point3> ips; 581 ips.clear(); 582 int c = lineBallIntersect(Ball(Point3(0.0, 0.0, 0.0), vecLen(x)), Line3(st, x), ips); 583 if (c == 0) return false; 584 if (c == 1) return true; 585 double mini = FINF; 586 for (int i = 0; i < 2; i++) { 587 mini = min(mini, ptDis(st, ips[i])); 588 } 589 return sgn(ptDis(st, x) - mini) == 0; 590 } 591 592 bool check(Point3 x, int n) { 593 for (int i = 0; i < n; i++) { 594 if (test(x, sate[i])) return true; 595 } 596 return false; 597 } 598 599 int main() { 600 // freopen("in", "r", stdin); 601 int n, m; 602 while (cin >> n >> m && (n || m)) { 603 double x, y, z; 604 for (int i = 0; i < n; i++) { 605 cin >> x >> y >> z; 606 sate[i] = Point3(x, y, z); 607 } 608 int cnt = 0; 609 for (int i = 0; i < m; i++) { 610 cin >> x >> y >> z; 611 if (check(Point3(x, y, z), n)) cnt++; 612 } 613 cout << cnt << endl; 614 } 615 return 0; 616 }
至此,hdu分类中的几道基础几何已经切完。
P.S.: 模板有更新,之前的模板在点到直线上的投影一函数中有错。
——written by Lyon