数据结构综合性实验:多种功能的平衡二叉排序树
数据结构的期末作业是关于平衡二叉排序树的综合性实验,其中需要完成的功能有:
(1) 插入新结点
(2) 前序、中序、后序遍历二叉树 (递归)
(3) 前序、中序、后序遍历的非递归算法
(4) 层次遍历二叉树
(5) 在二叉树中查找给定关键字(函数返回值为成功1,失败0)
(6) 交换各结点的左右子树
(7) 求二叉树的深度
(8) 叶子结点数
(9) 删除某结点
搞了两三天,上面的功能都实现了。而且我弄的是模板,兼容性也就相对强了一些。
其实这对我只是一个锻炼而已,目测代码方面还有很多的地方可以改进,欢迎读者提出或指正。
弄这个的时候发现一个比较矛盾的地方,就是其中会有树交换子树的操作。交换后,原来升序将会变成降序,反之亦然。所以,我在做的时候就不是单纯的给出交换子树的算法,而是在这个处理过后修改一个标记。初始化排序是按非降排序的,如果进行过一次倒置操作,树将以非升方式排序。这样就保持了二叉排序树的特性了。
View Code
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <algorithm> 6 #include <cassert> 7 #include <ctime> 8 9 using namespace std; 10 11 /********** simple stack template by Lyon 2012.11.24 **********/ 12 template <class T> 13 class Stack { 14 int maxSize, curSize; 15 T *elem; 16 public: 17 void init() { // initialize stack 18 maxSize = 16; 19 curSize = 0; 20 elem = (T *) malloc(maxSize * sizeof(T)); 21 } 22 bool empty() { // whether the stack is empty 23 return curSize == 0; 24 } 25 int size() { // get the size 26 return curSize; 27 } 28 void push(T e) { // push e into stack 29 while (curSize >= maxSize) { 30 maxSize <<= 1; 31 elem = (T *) realloc(elem, maxSize * sizeof(T)); 32 } 33 elem[curSize++] = e; 34 } 35 void pop() { // pop out the top element 36 assert(curSize > 0); 37 curSize--; 38 } 39 T top() { // get the top element 40 assert(curSize > 0); 41 return elem[curSize - 1]; 42 } 43 } ; 44 /****************************************************************/ 45 46 /********** simple queue template by Lyon 2012.11.24 **********/ 47 template <class T> 48 class Queue { 49 struct Node { 50 T elem; 51 Node *next; 52 Node (T &x) { 53 elem = x; 54 next = NULL; 55 } 56 } *head, *tail; 57 int curSize; 58 public: 59 void init() { // initialize queue 60 head = tail = NULL; 61 curSize = 0; 62 } 63 bool empty() { // whether the queue is empty 64 return curSize == 0; 65 } 66 int size() { // get the size 67 return curSize; 68 } 69 void push(T &e) { // push e into queue 70 if (head == NULL) { 71 head = tail = new Node(e); 72 } else { 73 tail->next = new Node(e); 74 tail = tail->next; 75 } 76 curSize++; 77 } 78 void pop() { // pop out the front element 79 assert(head != NULL); 80 Node *tmp = head; 81 head = head->next; 82 if (tail == tmp) tail = NULL; 83 delete tmp; 84 curSize--; 85 } 86 T front() { // get the front element 87 assert(head != NULL); 88 return head->elem; 89 } 90 T back() { // get the back element 91 assert(tail != NULL); 92 return tail->elem; 93 } 94 } ; 95 /****************************************************************/ 96 97 /********** SBTree(short for Size-Balanced Tree) template by Lyon 2012.11.24 **********/ 98 template <class T> 99 struct SBTNode { // size-balanced tree's node 100 int size, depth, leaf; // size - subtree's size, depth - subtree's depth, leaf - the number of leaf in subtree 101 T key; 102 SBTNode<T> *c[2]; // two child 103 SBTNode<T> (T k) { 104 key = k; 105 size = 1; 106 depth = 1; 107 leaf = 1; 108 c[0] = c[1] = NULL; 109 } 110 } ; 111 template <class T> 112 class SBTree { // size-balanced tree 113 SBTNode<T> *Root; 114 bool less; // the way of sort 115 void delTree(SBTNode<T> *&rt) { // delete the tree 116 if (!rt) return ; 117 delTree(rt->c[0]); 118 delTree(rt->c[1]); 119 delete rt; 120 rt = NULL; 121 less = false; 122 } 123 void rotate(SBTNode<T> *&x, bool left) { // rotate subtree x 124 bool right = !left; 125 SBTNode<T> *y = x->c[left]; 126 x->c[left] = y->c[right]; 127 y->c[right] = x; 128 y->size = x->size; 129 x->size = (x->c[0] ? x->c[0]->size : 0) + (x->c[1] ? x->c[1]->size : 0) + 1; 130 x->depth = max(x->c[0] ? x->c[0]->depth : 0, x->c[1] ? x->c[1]->depth : 0) + 1; 131 y->depth = max(y->c[0] ? y->c[0]->depth : 0, y->c[1] ? y->c[1]->depth : 0) + 1; 132 x->leaf = x->c[0] == NULL && x->c[1] == NULL ? 1 : (x->c[0] ? x->c[0]->leaf : 0) + (x->c[1] ? x->c[1]->leaf : 0); 133 x = y; 134 } 135 void maintain(SBTNode<T> *&rt, bool right) { // maintain subtree rt, if the right side of subtree is deeper 136 if (!rt->c[right] || !rt) return ; 137 bool left = !right; 138 int ls = rt->c[left] ? rt->c[left]->size : 0; 139 if (rt->c[right]->c[right] && rt->c[right]->c[right]->size > ls) rotate(rt, right); 140 else if (rt->c[right]->c[left] && rt->c[right]->c[left]->size > ls) rotate(rt->c[right], left), rotate(rt, right); 141 else return ; 142 maintain(rt->c[0], false); 143 maintain(rt->c[1], true); 144 maintain(rt, false); 145 maintain(rt, true); 146 } 147 void insert(SBTNode<T> *&rt, SBTNode<T> *x) { // insert x into subtree rt 148 if (!rt) { 149 rt = x; 150 return ; 151 } 152 rt->size++; 153 insert(rt->c[(x->key >= rt->key) ^ less], x); 154 maintain(rt, (x->key >= rt->key) ^ less); 155 rt->depth = max(rt->c[0] ? rt->c[0]->depth : 0, rt->c[1] ? rt->c[1]->depth : 0) + 1; 156 rt->leaf = rt->c[0] == NULL && rt->c[1] == NULL ? 1 : (rt->c[0] ? rt->c[0]->leaf : 0) + (rt->c[1] ? rt->c[1]->leaf : 0); 157 } 158 bool erase(SBTNode<T> *&rt, T k) { // erase key k in subtree rt 159 if (!rt) return false; 160 rt->size--; 161 if (k == rt->key) { 162 SBTNode<T> *t; 163 if (!rt->c[0] && !rt->c[1]) { 164 delete rt; 165 rt = NULL; 166 } else if (!rt->c[1]) { 167 t = rt, rt = rt->c[0]; 168 delete t; 169 } else if (!rt->c[0]) { 170 t = rt, rt = rt->c[1]; 171 delete t; 172 } else { 173 t = rt->c[1]; 174 while (t->c[0]) t = t->c[0]; 175 rt->key = t->key; 176 return erase(rt->c[1], t->key); 177 } 178 } else return erase(rt->c[(k > rt->key) ^ less], k); 179 if (rt) { 180 rt->depth = max(rt->c[0] ? rt->c[0]->depth : 0, rt->c[1] ? rt->c[1]->depth : 0) + 1; 181 rt->leaf = rt->c[0] == NULL && rt->c[1] == NULL ? 1 : (rt->c[0] ? rt->c[0]->leaf : 0) + (rt->c[1] ? rt->c[1]->leaf : 0); 182 } 183 return true; 184 } 185 void Traverse(SBTNode<T> *rt, int kind) { // recursive traverse : 1.pre 2.in 3.post 186 if (!rt) return ; 187 if (kind == 1) cout << rt->key << ends; 188 Traverse(rt->c[0], kind); 189 if (kind == 2) cout << rt->key << ends; 190 Traverse(rt->c[1], kind); 191 if (kind == 3) cout << rt->key << ends; 192 } 193 void nonRecursiveTraverse(int kind) { // non-recursive traverse : 1.pre 2.in 3.post 194 Stack<pair<SBTNode<T> *, int> > rec; 195 SBTNode<T> *cur; 196 int t; 197 rec.init(); 198 rec.push(make_pair(Root, 1)); 199 while (rec.size()) { 200 cur = rec.top().first; 201 t = rec.top().second; 202 rec.pop(); 203 if (cur && t == kind) cout << cur->key << ends; 204 if (!cur || t >= 3 || t <= 0) continue; 205 // cout << cur->key << '-' << t << ends; 206 rec.push(make_pair(cur, t + 1)); 207 rec.push(make_pair(cur->c[t - 1], 1)); 208 } 209 } 210 void reverse(SBTNode<T> *rt) { // reverse subtree rt 211 if (!rt) return ; 212 swap(rt->c[0], rt->c[1]); 213 reverse(rt->c[0]); 214 reverse(rt->c[1]); 215 } 216 public: 217 void init(bool cmp = false) { // initialize SBTree 218 Root = NULL; 219 less = cmp; 220 } 221 bool empty() { 222 return Root == NULL; 223 } 224 void delTree() { // delete SBTree 225 delTree(Root); 226 cout << "The Size-balanced Tree is deleted!" << endl; 227 } 228 void insert(T x) { // insert x into SBTree 229 SBTNode<T> *tmp = new SBTNode<T>(x); 230 insert(Root, tmp); 231 cout << "Element " << x << " Insert Successfully!" << endl; 232 } 233 bool erase(T k) { // erase k in SBTree 234 if (erase(Root, k)) { 235 cout << "Element " << k << " Erase Successfully!" << endl; 236 return true; 237 } else { 238 cout << "Element " << k << " not found!" << endl; 239 return false; 240 } 241 } 242 void preTraverse() { // output the pre-traverse array 243 cout << "The pre-Traverse array is:" << endl; 244 Traverse(Root, 1); 245 cout << endl; 246 } 247 void inTraverse() { // output the in-traverse array 248 cout << "The in-Traverse array is:" << endl; 249 Traverse(Root, 2); 250 cout << endl; 251 } 252 void postTraverse() { // output the post-traverse array 253 cout << "The post-Traverse array is:" << endl; 254 Traverse(Root, 3); 255 cout << endl; 256 } 257 void nonRecursivePreTraverse() { // in non-recursive way 258 cout << "The pre-Traverse array is (non-recursive):" << endl; 259 nonRecursiveTraverse(1); 260 cout << endl; 261 } 262 void nonRecursiveInTraverse() { // in non-recursive way 263 cout << "The in-Traverse array is (non-recursive):" << endl; 264 nonRecursiveTraverse(2); 265 cout << endl; 266 } 267 void nonRecursivePostTraverse() { // in non-recursive way 268 cout << "The post-Traverse array is (non-recursive):" << endl; 269 nonRecursiveTraverse(3); 270 cout << endl; 271 } 272 bool find(T key) { // find key value in SBTree 273 SBTNode<T> *p = Root; 274 while (true) { 275 if (!p) return false; 276 if (key == p->key) return true; 277 if ((key < p->key) ^ less) p = p->c[0]; 278 else p = p->c[1]; 279 } 280 } 281 int depth() { 282 return Root->depth; // the depth of SBTree 283 } 284 int leaves() { 285 return Root->leaf; // the number of leaf in SBTree 286 } 287 void reverse() { // reverse SBTree 288 less = !less; 289 reverse(Root); 290 cout << "Tree is reversed!" << endl; 291 } 292 void nonRecursiveReverseDFS() { // in non-recursive way 293 less = !less; 294 Stack<pair<SBTNode<T> *, int> > rec; 295 SBTNode<T> *cur; 296 int t; 297 rec.init(); 298 rec.push(make_pair(Root, 1)); 299 while (rec.size()) { 300 cur = rec.top().first; 301 t = rec.top().second; 302 rec.pop(); 303 if (!cur || t >= 3 || t <= 0) continue; 304 if (t == 1) swap(cur->c[0], cur->c[1]); 305 // cout << cur->key << '-' << t << ends; 306 rec.push(make_pair(cur, t + 1)); 307 rec.push(make_pair(cur->c[t - 1], 1)); 308 } 309 } 310 void nonRecursiveReverseBFS() { 311 less = !less; 312 Queue<SBTNode<T> *> tmp; 313 SBTNode<T> *cur; 314 tmp.init(); 315 tmp.push(Root); 316 while (tmp.size()) { 317 cur = tmp.front(); 318 swap(cur->c[0], cur->c[1]); 319 if (cur->c[0]) tmp.push(cur->c[0]); 320 if (cur->c[1]) tmp.push(cur->c[1]); 321 } 322 cout << "Tree is reversed!" << endl; 323 } 324 void levelTraverse() { // level traverse 325 Queue<SBTNode<T> *> q; 326 cout << "The level traverse array is:" << endl; 327 q.init(); 328 q.push(Root); 329 SBTNode<T> *cur; 330 while (q.size()) { 331 cur = q.front(); 332 q.pop(); 333 cout << cur->key << ends; 334 if (cur->c[0]) q.push(cur->c[0]); 335 if (cur->c[1]) q.push(cur->c[1]); 336 } 337 cout << endl; 338 } 339 } ; 340 /*************************************************************************************/ 341 342 343 344 #define REP(i, n) for (int i = 0; i < n; i++) 345 SBTree<int> SBT; 346 347 int main() { 348 int n, e, op; 349 char buf[100]; 350 351 SBT.init(); 352 cout << "请输入树的节点个数:"; 353 cin >> n; 354 cout << "请输入" << n << "个整数:"; 355 REP(i, n) { 356 cin >> e; 357 SBT.insert(e); 358 } 359 system("pause > nul"); 360 system("cls"); 361 while (true) { 362 while (true) { 363 cout << "━━━━━━━━━━━━━━━━━┓\n"; 364 cout << " 1.查看树的前中后序及层次遍历 ┃\n"; 365 cout << " 2.查看树的前中后序遍历(非递归)┃\n"; 366 cout << " 3.查找树的结点 ┃\n"; 367 cout << " 4.查看树的深度和叶子结点个数 ┃\n"; 368 cout << " 5.交换树的左右子树 ┃\n"; 369 cout << " 6.插入新的结点 ┃\n"; 370 cout << " 7.删除结点 ┃\n"; 371 cout << " 8.退出程序 ┃\n"; 372 cout << "━━━━━━━━━━━━━━━━━┛\n"; 373 cout << "请输入操作编号:"; 374 cin >> op; 375 if (0 <= op && op <= 8) break; 376 cout << "输入错误,请重新输入!" << endl; 377 system("pause > nul"); 378 system("cls"); 379 } 380 switch (op) { 381 case 1: 382 if (SBT.empty()) cout << "当前树为空树" << endl; 383 else { 384 SBT.preTraverse(); 385 SBT.inTraverse(); 386 SBT.postTraverse(); 387 SBT.levelTraverse(); 388 } 389 break; 390 case 2: 391 if (SBT.empty()) cout << "当前树为空树" << endl; 392 else { 393 SBT.nonRecursivePreTraverse(); 394 SBT.nonRecursiveInTraverse(); 395 SBT.nonRecursivePostTraverse(); 396 } 397 break; 398 case 3: 399 cout << "请输入需要查找结点的值:"; 400 cin >> e; 401 if (SBT.find(e)) cout << "查找成功,该结点存在!" << endl; 402 else cout << "查找失败,该结点不存在!" << endl;; 403 break; 404 case 4: 405 cout << "树的深度为:" << SBT.depth() << endl; 406 cout << "树的叶子结点个数为:" << SBT.leaves() << endl; 407 break; 408 case 5: 409 cout << "确定要交换树的左右结点吗?(交换以后,元素升降序将改变)" << endl << "按'Y'键后回车继续:"; 410 cin >> buf; 411 strlwr(buf); 412 if (buf[0] == 'y') { 413 SBT.reverse(); 414 cout << "操作成功" << endl; 415 } else cout << "已放弃操作" << endl; 416 break; 417 case 6: 418 cout << "请输入新结点的值:"; 419 cin >> e; 420 SBT.insert(e); 421 cout << "结点已成功插入" << endl; 422 break; 423 case 7: 424 if (SBT.empty()) cout << "当前树为空树,不能进行删除操作" << endl; 425 else { 426 SBT.nonRecursiveInTraverse(); 427 cout << "请输入要删除的结点的值: "; 428 cin >> e; 429 if (!SBT.erase(e)) cout << "操作失败,该结点不存在" << endl; 430 else cout << "操作成功" << endl; 431 } 432 break; 433 case 8: 434 SBT.delTree(); 435 cout << "操作成功,可以安全退出!" << endl; 436 system("pause > nul"); 437 return 0; 438 default: 439 cout << "出现异常!" << endl; 440 return -1; 441 } 442 system("pause > nul"); 443 system("cls"); 444 } 445 }
——written by Lyon