题解:AT_arc116_b [ARC116B] Products of Min-Max

在题库里面乱翻,就翻到了。

因为在这道题里面子序列不需要考虑元素顺序,所以原序列无论是什么顺序都不会影响答案。

所以先把元素按照从大到小的顺序排列,然后考虑每个元素的贡献。

在当前序列中,对于元素 \(a_i\),不妨设其为最小值,并去寻找它能作为哪些序列的最小值。容易发现它作为最小值的时候只能和 \(1\sim i\) 中的元素产生贡献。

具体的,对于当前从 \(1\sim i\) 中选择的 \(a_j\),如果令其为最大值,那么由 \(a_i\)\(a_j\) 这两个值作为最值的序列元素一定都在 \(j\sim i\) 之间,学过集合的同学都知道,这样的序列显然有 \(2^{i-j-1}\) 个。

这样我们就可以得到一个 \(\mathcal{O}(n^2)\) 的解法,如下:

\[\sum_{i=1}^{n}(a_i\times(\sum_{j=1}^{i}(a_j\times 2^{i-j-1}))) \]

由于 \(i-j-1\) 中会出现负数,我们稍微变一下式子可以得到:

\[\sum_{i=1}^{n}(a_i\times(\sum_{j=1}^{i-1}(a_j\times 2^{i-j-1})+a_i)) \]

但是这样显然还不够,于是我们可以
\(j\) 的枚举进行优化。容易想到预处理。

我们用一个中间变量 \(sum\) 表示第二个括号里面的值。每次计算过答案以后,我们让 \(sum\gets sum\times 2+a_i\) 即可。

记得取模。

提交记录

posted @   Redamancy_Lydic  阅读(12)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 我干了两个月的大项目,开源了!
· 推荐一款非常好用的在线 SSH 管理工具
· 千万级的大表,如何做性能调优?
· 盘点!HelloGitHub 年度热门开源项目
· Phi小模型开发教程:用C#开发本地部署AI聊天工具,只需CPU,不需要GPU,3G内存就可以运行,
点击右上角即可分享
微信分享提示