CF-822C Hacker, pack your bags! 思维题

题目大意是给若干线段及其费用,每个线段权值即为其长度。要求找出两个不重合线段,令其权值和等于x且费用最少。

解法:

先分析一下题目,要处理不重合的问题,有重合的线段不能组合,其次这是一个选二问题,当枚举其中一条线段时,另一条合法线段的必要条件“权值”可以直接得出。

对于第一个问题,想到先对线段根据l进行排序,这样每次枚举一个线段的时候,如果在它的l之后有一个合法线段,我们只要标记一下x-LenNow,待枚举到那个合法线段的时候自然就判断出来了。如果在它之前有一个合法线段符合条件,根据刚刚的做法我们自然可以处理。现在问题就是,万一它不合法,它重合呢?解决方法就是延迟标记它。对于线段们,我们已经对l排序,那么一旦枚举到一条线段的l大于等于之前待标记的某线段的r,那它及之后的线段都不会与它重合,而之前的线段(标记线段之后的线段)一定与它重合。所以我们维护一个优先队列,以待标记的r进行排序,每次枚举前,根据枚举到线段的l将部分待标记物执行标记即可。

撤了那么多,看看代码吧。

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <queue>
#define LL long long int
using namespace std;
struct node
{
    LL r,len,c;
    friend bool operator < (node a,node b)
    {
        return a.r>b.r;

    }
};//用于延迟标记
struct cd
{
    LL l,r,c;
};
LL mi[200005];
const LL inf=3000000000;
vector<cd> v;
bool cmp(cd a,cd b)
{
    if(a.l==b.l)
        return a.r<b.r;
    return a.l<b.l;
}
int main()
{
    LL n,x;
    while(cin>>n>>x)
    {
        LL a,b,c;
        LL ans=inf;
        v.clear();
        fill(mi,mi+200000,inf);
        priority_queue<node> upt;
        for(LL i=0;i<n;i++)
        {
            cin>>a>>b>>c;
            v.push_back((cd){a,b,c});
        }
        sort(v.begin(),v.end(),cmp);
        for(int i=0;i<v.size();i++)
        {
            while(!upt.empty())
            {
                node check=upt.top();
                if(v[i].l<=check.r) break;
                upt.pop();
                if(mi[check.len]>check.c)
                    mi[check.len]=check.c;
            }
            cd now=v[i];
            LL len=now.r-now.l+1;
            LL f=x-len;
            upt.push((node){now.r,len,now.c});
            if(f<=0) continue;
            if(now.c+mi[f]<ans) ans=now.c+mi[f];
        }
        if(ans!=inf)
            cout<<ans<<endl;
        else
            cout<<-1<<endl;
    }
    return 0;
}

 

posted @ 2017-07-12 16:08  Luke_Ye  阅读(472)  评论(0编辑  收藏  举报