「postOI」Colouring Game

题意

\(n\) 个格子排成一行,一开始每个格子上涂了蓝色或红色。

Alice 和 Bob 用这些格子做游戏。Alice 先手,两人轮流操作:

  • Alice 操作时,选择两个相邻的格子,其中至少要有一个红色格子,然后把这两个格子涂成白色;
  • Bob 操作时,选择两个相邻的格子,其中至少要有一个蓝色格子,然后把这两个格子涂成白色。

注意白色的格子也可以被选中,只要满足“至少一个红/蓝色格子”的条件。当轮到一方操作,但该方无法进行操作时,另一方获胜。

如果两人都采取最优策略,谁会获胜?

\(n \le 5 \times 10^5\)

解析

首先贪心地想,两人会采取什么策略?不妨把游戏看成一个“轮次”的游戏,红色格子是 A 的轮次,蓝色格子是 B 的轮次。显然双方都想让自己的轮次尽可能多,对方尽可能少。由于每次操作至少选择一个己方的颜色,所以每轮会至少消耗一个己方轮次。

  • 如果是两个己方颜色,则会消耗两个己方轮次,显然不优;
  • 如果是己方颜色和白色,则只消耗一个己方轮次;
  • 如果是己方颜色和对方颜色,则不仅只消耗一个己方轮次,还会减少一个对方轮次,应该是比较优的策略。

换句话说,会优先选策略三;然后会选择策略二;最后,其实容易发现除非全是红色,否则不会用到策略一,因为可以替代成两次策略二。

于是只考虑策略二三。观察策略的特点,当两人都在采取策略三时,两人的轮次差是不变的,而采取策略二时:

  • 如果两人剩余轮次数不同,则剩余轮次多的人获胜;
  • 如果两人剩余轮次数相同,则后手获胜,或者说,取走最后一个 RBBR 的一方获胜。

于是我们可以判断:

  • 如果两种颜色的数量不同,则较多的颜色对应的玩家必胜;
  • 如果两种颜色相同,则取走最后一个 RBBR 的一方获胜。

第二种情况如何考虑?既然只需要考虑 RBBR,我们可以简化字符串,简化后就是 RBRBRBR...。只是这样一段 RB 交替的串吗?也可以几个串连起来(用 | 划分串)RBR|RBRB|BRB。注意到采取策略三时,我们不可能跨串选择格子(因为这样的两个格子是同色的),于是每个串是独立的子游戏

独立的子游戏”?nim游戏?SG函数?尝试用 SG 函数解题。那么整个游戏的 SG 值是每个串的 SG 值的异或和。

考虑一个串的 SG 值,由于是 RB 交替的,我们发现这个串里 R 多还是 B 多其实没有影响(比如 RBRBRB 其实没有区别),这样一来,一个串就可以用其长度代替了。记 \(SG(i)\) 表示长度为 \(i\) 的串的 SG 值,考虑选择 \(i, i + 1\) 两个格子,会将串分成两个长度分别为 \(i - 1, n - i - 1\) 的两个串,而这两个串又互不影响了,转移到的状态的 SG 值就是这两个串的 SG 值异或,则

\[SG(n) = \text{mex}_{1 \le i \le n - 1}\Big\{SG(i - 1)\text{ xor }SG(n - i - 1)\Big\} \]

这样我们可以 \(O(n^2)\) 计算 \(SG(n)\)。但这样显然不够……怎么优化?不能优化?那把表打出来看看……好像是以 \(34\) 为周期?除了前 \(68\) 个,剩下的以 \(34\) 为周期,于是可以先暴力算出 \(SG(0 \sim 1000)\),然后按周期推 \(SG(0 \sim n)\)

代码

#include <cstdio>
#include <cstring>
#include <algorithm>

const int MAXN = 5e5 + 10;

char col[MAXN];
int sg[MAXN];
bool tmp_is_exi[1005];

void calcSg()
{
    sg[0] = 0;
    for (int n = 1; n <= 1000; ++n)
    {
        memset(tmp_is_exi, 0, sizeof tmp_is_exi);
        for (int i = 1; i < n; ++i)
        {
            tmp_is_exi[sg[i - 1] ^ sg[n - i - 1]] = true;
        }
        for (int i = 0; ; ++i)
        {
            if (!tmp_is_exi[i])
            {
                sg[n] = i;
                break;
            }
        }
    }
    for (int i = 1001; i < MAXN; ++i)
    {
        sg[i] = sg[i - 34];
    }
}
bool solveCase()
{
    int len;
    scanf("%d%s", &len, col + 1);
    int cnt_red = 0;
    for (int i = 1; i <= len; ++i)
    {
        cnt_red += col[i] == 'R';
    }
    if (cnt_red != len - cnt_red)
    {
        return cnt_red > len - cnt_red;
    }
    int las = 1, overall_sg = 0;
    for (int i = 1; i < len; ++i)
    {
        if (col[i] == col[i + 1])
        {
            overall_sg ^= sg[i - las + 1];
            las = i + 1;
        }
    }
    overall_sg ^= sg[len - las + 1];
    return overall_sg != 0;
}

int main()
{
    calcSg();
    int cnt_cas;
    scanf("%d", &cnt_cas);
    while (cnt_cas--)
    {
        printf("%s\n", solveCase() ? "Alice" : "Bob");
    }
    return 0;
}
posted @ 2022-09-05 20:19  Lucky_Glass  阅读(54)  评论(0编辑  收藏  举报
TOP BOTTOM