「postOI」以另一种方式证明 FWT
记号
- \(\otimes\) 代表或/与/异或卷积;
- \(\oplus\) 代表“拼接”,例如 \(A\oplus B\) 即将 \(B\) 接在 \(A\) 的后面;
- \(+,-,\times\) 代表按位运算,例如 \(A+B=\{a_0+b_0,a_1+b_1,...,a_n + b_n\}\);
- \(F(A)\) 代表 \(A\) 进行 fwt 后的序列;
- \(A_0\) 代表 \(A\) 的前半部分,\(A_1\) 代表 \(A\) 的后半部分,\(A_0\oplus A_1 = A\)
或卷积
直接给出或FWT的递归形式:
\[F(A)=\begin{cases}F(A_0) \oplus F(A_0+A_1)&|A| > 1\\A&|A|=1\end{cases}
\]
接下来是一些性质:
- \(F(A + B) = F(A) + F(B)\),这一点比较明显;
- \(F(A\otimes B)=F(A) \times F(B)\),直接证明比较麻烦,我们考虑归纳证明。
易知在 \(|A| = |B| = 1\) 时,上述结论成立。
假设已经证明了对于 \(|A| = |B| = \frac n2\) 上述结论成立,下证对于 \(|A| = |B| = n\) 成立。
首先一个简单的分析——考虑 \(A_0\) 和 \(A_1\),其实下标上只有最高位上 \(A_0\) 是 \(0\),\(A_1\) 是 \(1\) 的区别。然后我们再考虑 \((A \otimes B)_0\),既然是或卷积,最高位是 \(0\),那肯定参与的下标都是最高位为 \(0\),也即
\[(A \otimes B)_0 = A_0 \times B_0
\]
稍微复杂的是 \((A \otimes B)_1\),要求最高位至少有一个 \(1\),也就是说
\[(A \otimes B)_1 = A_0 \otimes B_1 + A_1 \otimes B_0 + A_1 \otimes B_1
\]
有了以上的结论就可以完成或卷积性质的证明了:
\[\begin{aligned}
F(A \otimes B) &= F\Big[(A \otimes B)_0\Big] \oplus F\Big[(A \otimes B)_0 + (A \otimes B)_1\Big]\\
&= F(A_0\otimes B_0) \oplus F(A_0 \otimes B_0 + A_0 \otimes B_1 + A_1 \otimes B_0 + A_1 \otimes B_1)\\
&= [F(A_0) \times F(B_0)] \oplus [F(A_0 + A_1) \times F(B_0 + B_1)]\\
&= [F(A_0) \oplus F(A_0 + A_1)] \times [F(B_0) \oplus F(B_0 + B_1)] & \text{(按位运算)}\\
&= F(A) \times F(B)
\end{aligned}
\]
与卷积与或卷积相同。
异或卷积
同样的,我们可以得到
\[\begin{matrix}
(A \otimes B)_0 = A_0 \otimes B_0 + A_1 \otimes B_1\\
(A \otimes B)_1 = A_0 \otimes B_1 + A_1 \otimes B_0
\end{matrix}
\]
然后给出异或FWT的递归式:
\[F(A)=\begin{cases}
F(A_0 + A_1) \oplus F(A_0 - A_1)&|A| > 1\\
A&|A| = 1
\end{cases}
\]
接下来是类似的归纳推导:
\[\begin{aligned}
F(A \otimes B) &= F[(A \otimes B)_0 + (A \otimes B)_1] \oplus F[(A \otimes B)_0 - (A \otimes B)_1]\\
&= F(A_0 \otimes B_0 + A_1 \otimes B_1 + A_0 \otimes B_1 + A_1 \otimes B_0) \oplus F(A_0 \otimes B_0 + A_1 \otimes B_1 - A_0 \otimes B_1 - A_1 \otimes B_0)\\
&= [F(A_0 + A_1) \times F(B_0 + B_1)] \oplus [F(A_0 - A_1) \times F(B_0 - B_1)]\\
&= [F(A_0 + A_1) \oplus F(A_0 - A_1)] \times [F(B_0 + B_1) \otimes F(B_0 - B_1)]\\
&= F(A) \times F(B)
\end{aligned}
\]
小记
之前推导 FWT 是正向的构造,虽然构造非常巧妙,但是不太好理解。尤其是异或卷积利用到“异或后二进制位 1 的个数的奇偶性不变”这种虽然明显,但并不好用的性质。
现在能找到一种用归纳法证明 FWT 的方式,感觉非常直接,所以记下来了。
欢迎转载٩(๑❛ᴗ❛๑)۶,请在转载文章末尾附上原博文网址~