Dancepted

Dancing Acceped!

ZOJ4060 Flippy Sequence(思维题)

题目链接:传送门

题目大意:

  两个长度为n的二进制串s,t,每次操作可以将s串的一段区间取反。求操作exactly twice后使得s=t的方法数。

思路:

  连续的尽可能长的 si ≠ ti 的区间简称A,连续的尽可能长的 si = ti 的区间简称B。

  则1-n可以划分为若干个AB交替出现,要求操作exactly twice后s=t,就是消去所有的A。

  发现每次操作最多只能使得A的数量减少1个。

所以若对于给出的s,t:

  ① cnt(A) ≥ 3:

    不能完成,方法数为0。

  ② cnt(A) = 2:

    有2 × 3 = 6种:(下划线表示反转,顺序对调就翻一倍)

    1)ABA + ABA

    2)ABA + ABA

    3)ABA + ABA

  ③ cnt(A) = 1:

    只要第一次操作能使得A的数量还是1即可:

    1)把A分两次翻转,有2 × (len(A)-1)种;

    2)翻转B的一段+A,有2 × (N-len(A))种;

  ④ cnt(A) = 0:

    此时整个1-n为B,任意取一段区间翻两次,有n × (n+1) / 2种。

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int MAX_N = 1e6 + 5;

char s[MAX_N], t[MAX_N];

int main()
{
    int T;
    cin >> T;
    while (T--) {
        int N;
        scanf("%d", &N);
        scanf("%s%s", s+1, t+1);
        int l, r, cntdif = 0;
        for (int i = 1; i <= N; i++) {
            if (s[i] != t[i]) {
                cntdif++;
                if (cntdif == 3)
                    break;
                l = r = i;
                while (i+1 <= N && s[i+1] != t[i+1]) {
                    r++;
                    i++;
                }
            }
        }
        if (cntdif == 3) {
            puts("0");
        }
        else if (cntdif == 2) {
            puts("6");
        }
        else if (cntdif == 1) {
            int len = r-l+1;
            ll ans = 0;
            ans += (len-1)*2;
            ans += (N-len)*2;
            printf("%lld\n", ans);
        }
        else if (cntdif == 0) {
            ll ans = 1LL * N * (N+1)/2;
            printf("%lld\n", ans);
        }
//        puts("");
    }
    return 0;
}
/*
10
1
1
0
2
00
11
5
01010
00111
3
111
111
7
1010101
1111111
*/
View Code

 

posted on 2018-11-11 10:14  Danceped  阅读(324)  评论(0编辑  收藏  举报

导航