图的定义与术语 - 数据结构和算法54

图的定义与术语

 

让编程改变世界

Change the world by program


  在前边讲解的线性表中,每个元素之间只有一个直接前驱和一个直接后继,在树形结构中,数据元素之间是层次关系,并且每一层上的数据元素可能和下一层中多个元素相关,但只能和上一层中一个元素相关。   但这仅仅都只是一对一,一对多的简单模型,如果要研究如人与人之间关系就非常复杂了。 万恶图为首,前边可能有些童鞋会感觉树的术语好多,可来到了图这章节,你才知道什么叫做真正的术语多!  

图的定义

  图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。   对于图的定义,我们需要明确几个注意的地方:
  1. 线性表中我们把数据元素叫元素,树中叫结点,在图中数据元素我们则称之为顶点(Vertex)。
  2. 线性表可以没有数据元素,称为空表,树中可以没有结点,叫做空树,而图结构在咱国内大部分的教材中强调顶点集合V要有穷非空。
  3. 线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图结构中,任意两个顶点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的。
 

图的各种奇葩定义

 

无向边:若顶点Vi到Vj之间的边没有方向,则称这条边为无向边(Edge),用无序偶(Vi,Vj)来表示。

上图G1是一个无向图,G1={V1,E1},其中
  • V1={A,B,C,D},
  • E1={(A,B),(B,C),(C,D),(D,A),(A,C)}
 

有向边:若从顶点Vi到Vj的边有方向,则称这条边为有向边,也成为弧(Arc),用有序偶<Vi,Vj>来表示,Vi称为弧尾,Vj称为弧头。

上图G2是一个无向图,G2={V2,E2},其中
  • V2={A,B,C,D},
  • E2={<B,A>,<B,C>,<C,A>,<A,D>}
 

简单图:在图结构中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图。

以下两个则不属于简单图:  

无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。含有n个顶点的无向完全图有n*(n-1)/2条边。

 

有向完全图:在有向图中,如果任意两个顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图。含有n个顶点的有向完全图有n*(n-1)条边。

 

稀疏图和稠密图:这里的稀疏和稠密是模糊的概念,都是相对而言的,通常认为边或弧数小于n*logn(n是顶点的个数)的图称为稀疏图,反之称为稠密图。

 

有些图的边或弧带有与它相关的数字,这种与图的边或弧相关的数叫做权(Weight),带权的图通常称为网(Network)。

  假设有两个图G1=(V1,E1)和G2=(V2,E2),如果V2⊆V1,E2⊆E1,则称G2为G1的子图(Subgraph)。 [buy] 获得所有教学视频、课件、源代码等资源打包 [/buy] [Downlink href='http://kuai.xunlei.com/d/BdsUAwJ47wDRc3lRd20']视频下载[/Downlink]
posted @ 2013-04-26 04:25  我就爱小甲鱼  阅读(159)  评论(0编辑  收藏  举报