AtCoder - 2272 Xor Sum题解


Time limit : 2sec / Memory limit : 256MB

Score : 600 points

Problem Statement

You are given a positive integer N. Find the number of the pairs of integers u and v (0≦u,v≦N)such that there exist two non-negative integers a and b satisfying a xor b=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 109+7.

Constraints

1≦N≦1018

Input

The input is given from Standard Input in the following format: N

Output

Print the number of the possible pairs of integers u and v, modulo 109+7.

Sample Input 1

3

Sample Output 1

5

The five possible pairs of u and v are:

u=0,v=0 (Let a=0,b=0, then 0 xor 0=0, 0+0=0.)

u=0,v=2 (Let a=1,b=1, then 1 xor 1=0, 1+1=2.)

u=1,v=1 (Let a=1,b=0, then 1 xor 0=1, 1+0=1.)

u=2,v=2 (Let a=2,b=0, then 2 xor 0=2, 2+0=2.)

u=3,v=3 (Let a=3,b=0, then 3 xor 0=3, 3+0=3.)

Sample Input 2

1422

Sample Output 2

52277

Sample Input 3

1000000000000000000

Sample Output 3

787014179

Solution

题意:给出正整数N,求出整数对uv (0≤u,v≤N)的数目,使得存在两个非负整数ab满足a xor b = ua + b= v。这里,xor表示按位异或。对答案取模10^9 + 7

这是一道dp题,由于a+b = (a & b) <<1 + a ^ b,故可知a ^ b定然小于a+b,故本题可以化为寻找对于a+b<=n中a b 的个数。(当然 0 和 1 与 1 和 0是1种情况)

首先可以使用暴力的手段得知,当n=0的时候,答案为1,n=1的时候,答案为2。对于a与b(化作二进制来看),两者的末位和有0,1,2三种情况,设a+b=x,令a = a1 * 2+a2, b = b1 * 2 + b2,a2+b2即为两者的末位和,又有x<=n,故a1+a2<=(n-a1-a2)/2,可以得出递推式 f[x] = f[x/2] + f[(x-1)/2] + f[(x-2)/2];

Code

#include <cstdio>
#include <map>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const ll maxn=1e18+5;
map <ll,ll> f;//n范围这么大,开数组开不下......
ll Fc(ll x){
	if(f[x])return f[x];
	return f[x]=(Fc(x>>1)+Fc((x-1)>>1)+Fc((x-2)>>1))%mod;//这里用位移是比'/'快,当然也更好理解
}
int main(){
	ll n;
	scanf("%lld",&n);
	f[0]=1;f[1]=2;
	printf("%lld\n",Fc(n));
	return 0;
}
posted @ 2020-05-11 17:27  liuzhaoxu  阅读(248)  评论(0编辑  收藏  举报