简单选择排序堆排序

 1 //简单选择排序
 2 void SelectSort(ElemType A[], int n) {
 3     int i, j, min,temp;
 4     for (i = 1; i <= n-1; ++i) {
 5         min = i;
 6         for (j = i + 1; j <= n; ++j)
 7             if (A[j] < A[min])
 8                 min = j;
 9         if (min != i) {
10             temp = A[i];
11             A[i] = A[min];
12             A[min] = temp;
13         }
14 
15     }
16 }
17 
18 //重建堆过程(以大根堆为例)
19 void sift(ElemType A[], int k, int m) {
20     int i, j;
21     A[0] = A[k];
22     i = k;
23     j = 2 * i;
24     int finished = 0;
25     while (j <= m && !finished) {
26         if (j + 1 <= m && A[j] < A[j + 1])//若存在右子树,且右子树的关键字大,则沿右分支筛选
27             j = j + 1;
28         if (A[0] >= A[j])
29             finished = 1;//筛选完毕
30         else {
31             A[i] = A[j];
32             i = j;
33             j = 2 * i;
34         }
35     }
36     A[i] = A[0];//A[k]放入适当的位置
37 }
38 //最后一个非叶结点位于第n/2向下取整个位置,n为二叉树结点数目,依次筛选从第n/2向下取整个结点开始,逐层向上倒退,直到根结点
39 void crt_heap(ElemType A[], int n) {
40     //对数组建堆,n为数组的长度
41     int i;
42     for (i = n / 2; i >= 1; --i)
43         sift(A, i, n);
44 }
45 //堆排序
46 void HeapSort(ElemType A[], int n) {
47     ElemType temp;
48     crt_heap(A, n);//初始建堆
49     for (i = n; i >= 2; --i) {//堆尾与堆顶记录交换
50         temp = A[1];
51         A[1] = A[i];
52         A[i] = temp;
53         sift(A, 1, i - 1);//重建堆,剩余的i-1个元素整理成堆
54     }
55 }
//重建堆,以小根堆为例
void sifts(ElemType A[], int k, int m) {
    int i, j;
    A[0] = A[k];
    i = k;
    j = 2 * i;
    finished = 0;
    while (j <= m; && !finished) {
        if (j + 1 <= m && A[j] > A[j + 1])
            j++;
        if (A[0]<=A[j])
            finished = 1;
        else {
            A[i] = A[j];
            i = j;
            j = 2 * i;
        }
    }
    A[i] = A[0];
}
void crt_heapl(ElemType A[], int n) {
    int i;
    for(i=n/2;i>=1;--i)
        sifts(A,i,n)
}

 

 

posted @ 2021-09-04 21:13  #Lorraine#  阅读(37)  评论(0编辑  收藏  举报