阿牧路泽

哪有那么多坚强,无非是死扛罢了
  博客园  :: 首页  :: 新随笔  :: 联系 :: 管理

19、【图】Kruskal(克鲁斯卡尔)算法

Posted on 2018-10-14 22:35  阿牧路泽  阅读(349)  评论(0编辑  收藏  举报

一、最小生成树

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

二、克鲁斯卡尔算法介绍

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

三、克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。
    边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。
    上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。
    上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。
    上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。
    上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。
    上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

四、克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

五、克鲁斯卡尔算法的代码说明

有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。

1. 基本定义

 1 // 边的结构体
 2 class EData
 3 {
 4     public:
 5         char start; // 边的起点
 6         char end;   // 边的终点
 7         int weight; // 边的权重
 8 
 9     public:
10         EData(){}
11         EData(char s, char e, int w):start(s),end(e),weight(w){}
12 };

EData是邻接矩阵边对应的结构体。

 1 class MatrixUDG {
 2     #define MAX    100
 3     #define INF    (~(0x1<<31))        // 无穷大(即0X7FFFFFFF)
 4     private:
 5         char mVexs[MAX];    // 顶点集合
 6         int mVexNum;             // 顶点数
 7         int mEdgNum;             // 边数
 8         int mMatrix[MAX][MAX];   // 邻接矩阵
 9 
10     public:
11         // 创建图(自己输入数据)
12         MatrixUDG();
13         // 创建图(用已提供的矩阵)
14         //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
15         MatrixUDG(char vexs[], int vlen, int matrix[][9]);
16         ~MatrixUDG();
17 
18         // 深度优先搜索遍历图
19         void DFS();
20         // 广度优先搜索(类似于树的层次遍历)
21         void BFS();
22         // prim最小生成树(从start开始生成最小生成树)
23         void prim(int start);
24         // 克鲁斯卡尔(Kruskal)最小生成树
25         void kruskal();
26         // 打印矩阵队列图
27         void print();
28 
29     private:
30         // 读取一个输入字符
31         char readChar();
32         // 返回ch在mMatrix矩阵中的位置
33         int getPosition(char ch);
34         // 返回顶点v的第一个邻接顶点的索引,失败则返回-1
35         int firstVertex(int v);
36         // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
37         int nextVertex(int v, int w);
38         // 深度优先搜索遍历图的递归实现
39         void DFS(int i, int *visited);
40         // 获取图中的边
41         EData* getEdges();
42         // 对边按照权值大小进行排序(由小到大)
43         void sortEdges(EData* edges, int elen);
44         // 获取i的终点
45         int getEnd(int vends[], int i);
46 };

MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2. 克鲁斯卡尔算法

 1 /*
 2  * 克鲁斯卡尔(Kruskal)最小生成树
 3  */
 4 void MatrixUDG::kruskal()
 5 {
 6     int i,m,n,p1,p2;
 7     int length;
 8     int index = 0;          // rets数组的索引
 9     int vends[MAX]={0};     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
10     EData rets[MAX];        // 结果数组,保存kruskal最小生成树的边
11     EData *edges;           // 图对应的所有边
12 
13     // 获取"图中所有的边"
14     edges = getEdges();
15     // 将边按照"权"的大小进行排序(从小到大)
16     sortEdges(edges, mEdgNum);
17 
18     for (i=0; i<mEdgNum; i++)
19     {
20         p1 = getPosition(edges[i].start);      // 获取第i条边的"起点"的序号
21         p2 = getPosition(edges[i].end);        // 获取第i条边的"终点"的序号
22 
23         m = getEnd(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
24         n = getEnd(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
25         // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
26         if (m != n)
27         {
28             vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
29             rets[index++] = edges[i];           // 保存结果
30         }
31     }
32     delete[] edges;
33 
34     // 统计并打印"kruskal最小生成树"的信息
35     length = 0;
36     for (i = 0; i < index; i++)
37         length += rets[i].weight;
38     cout << "Kruskal=" << length << ": ";
39     for (i = 0; i < index; i++)
40         cout << "(" << rets[i].start << "," << rets[i].end << ") ";
41     cout << endl;
42 }