Hadoop实验-HDFS与Mapreduce操作

一、实验目的  

1、利用虚拟机搭建集群部署hadoop

2HDFS文件操作以及文件接口编程;

3、MAPREDUCE并行程序开发、发布与调用。

二、实验内容

1、虚拟机集群搭建部署hadoop

   利用VMwarecentOS-7Xshell(secureCrt)等软件搭建集群部署hadoop,具体操作参照

    https://www.bilibili.com/video/BV1Kf4y1z7Nw?p=1

 

 

 

2、HDFS文件操作

(1)在分布式文件系统上验证HDFS文件命令

[-ls <path>]  //显示目标路径当前目录下的所有文件

 

 

 

 

[-du <path>]  //以字节为单位显示目录中所有文件的大小,或该文件的大小(如果path为文件)

 

 

 

2). HDFS文件操作

调用HDFS文件接口实现对分布式文件系统中文件的访问,如创建、修改、删除等。

源代码:

package mapreduce;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataOutputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.log4j.BasicConfigurator;

 

public class test {

public static void main(String[] args) {

BasicConfigurator.configure();

try {

Configuration conf = new Configuration();

 FileSystem fs = FileSystem.get(conf);

String filename = "hdfs://node01:8020/user/test.txt";

FSDataOutputStream os = fs.create(new Path(filename));

byte[] buff = "hello world!".getBytes();

os.write(buff, 0, buff.length);

System.out.println("Create" + filename);

} catch (Exception e) {

e.printStackTrace();

}

}

}

 

运行结果:

 

 

 

 

 

3.MAPREDUCE并行程序开发

1求每年最高气温

源代码:

package mapreduce;

 

import java.io.IOException;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class Temperature {

static class TempMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

@Override

public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

System.out.print("Before Mapper: " + key + ", " + value);

String line = value.toString();

String year = line.substring(0, 4);

int temperature = Integer.parseInt(line.substring(8));

context.write(new Text(year), new IntWritable(temperature));

System.out.println("======" + "After Mapper:" + new Text(year) + ", " + new IntWritable(temperature));

}

}

 

static class TempReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

StringBuffer sb = new StringBuffer();

 

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());

sb.append(value).append(",");

}

System.out.print("Before Reduce: " + key + ", " + sb.toString());

context.write(key, new IntWritable(maxValue));

System.out.println("======" + "After Reduce: " + key + ", " + maxValue);

}

}

public static void main(String[] args) throws Exception {

String dst = "hdfs://node01:8020/user/zzy/input.txt";

String dstOut = "hdfs://node01:8020/user/zzy/output";

Configuration hadoopConfig = new Configuration();

hadoopConfig.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName());

hadoopConfig.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName());

Job job = new Job(hadoopConfig);

// job.setJarByClass(NewMaxTemperature.class);

FileInputFormat.addInputPath(job, new Path(dst));

FileOutputFormat.setOutputPath(job, new Path(dstOut));

job.setMapperClass(TempMapper.class);

job.setReducerClass(TempReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.waitForCompletion(true);

System.out.println("Finished");

}

}

 

 

运行结果:

 

 

 

 

 

 

 

 

 

 

 

 

(2)词频统计

源代码:

import java.io.IOException;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {

@Override

protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)

throws IOException, InterruptedException {

String[] words = StringUtils.split(value.toString(), " ");

for (String word : words) {

context.write(new Text(word), new LongWritable(1));

}

}

}

 

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {

@Override

protected void reduce(Text arg0, Iterable<LongWritable> arg1,

Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {

int sum = 0;

for (LongWritable num : arg1) {

sum += num.get();

}

context.write(arg0, new LongWritable(sum));

}

}

 

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.log4j.BasicConfigurator;

public class WordCountRunner {

public static void main(String[] args)throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

BasicConfigurator.configure();

Configuration conf = new Configuration();

Job job = new Job(conf);

job.setJarByClass(WordCountRunner.class);

job.setJobName("wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(LongWritable.class);

job.setMapperClass(WordCountMapper.class);

job.setReducerClass(WordCountReducer.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path("hdfs://node01:8020/user/zzy/input_wordcount.txt"));// 输入路径

FileOutputFormat.setOutputPath(job, new Path("hdfs://node01:8020/user/zzy/output_wordcount"));// 输出路径

job.waitForCompletion(true);

}

}

运行结果:

 

 

 

 

 

 

 

 

posted on 2022-01-01 10:13  桑榆非晚柠月如风  阅读(773)  评论(0编辑  收藏  举报