3-Roc曲线绘制
关于ROC曲线的绘制过程,通过以下举例进行说明
假设有6次展示记录,有两次被点击了,得到一个展示序列(1:1,2:0,3:1,4:0,5:0,6:0),前面的表示序号,后面的表示点击(1)或没有点击(0)。
然后在这6次展示的时候都通过model算出了点击的概率序列。
下面看三种情况。
1 曲线绘制
1.1 如果概率的序列是(1:0.9,2:0.7,3:0.8,4:0.6,5:0.5,6:0.4)。
与原来的序列一起,得到序列(从概率从高到低排
1 | 1 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 |
绘制的步骤是:
1)把概率序列从高到低排序,得到顺序(1:0.9,3:0.8,2:0.7,4:0.6,5:0.5,6:0.4);
2)从概率最大开始取一个点作为正类,取到点1,计算得到TPR=0.5,FPR=0.0;
3)从概率最大开始,再取一个点作为正类,取到点3,计算得到TPR=1.0,FPR=0.0;
4)再从最大开始取一个点作为正类,取到点2,计算得到TPR=1.0,FPR=0.25;
5)以此类推,得到6对TPR和FPR。
然后把这6对数据组成6个点(0,0.5),(0,1.0),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。
这6个点在二维坐标系中能绘出来。
看看图中,那个就是ROC曲线。
1.2 如果概率的序列是(1:0.9,2:0.8,3:0.7,4:0.6,5:0.5,6:0.4)
与原来的序列一起,得到序列(从概率从高到低排)
1 | 0 | 1 | 0 | 0 | 0 |
---|---|---|---|---|---|
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 |
绘制的步骤是:
6)把概率序列从高到低排序,得到顺序(1:0.9,2:0.8,3:0.7,4:0.6,5:0.5,6:0.4);
7)从概率最大开始取一个点作为正类,取到点1,计算得到TPR=0.5,FPR=0.0;
8)从概率最大开始,再取一个点作为正类,取到点2,计算得到TPR=0.5,FPR=0.25;
9)再从最大开始取一个点作为正类,取到点3,计算得到TPR=1.0,FPR=0.25;
10)以此类推,得到6对TPR和FPR。
然后把这6对数据组成6个点(0,0.5),(0.25,0.5),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。
这6个点在二维坐标系中能绘出来
看看图中,那个就是ROC曲线。
1.3 如果概率的序列是(1:0.4,2:0.6,3:0.5,4:0.7,5:0.8,6:0.9)
与原来的序列一起,得到序列(从概率从高到低排)
0 | 0 | 0 | 0 | 1 | 1 |
---|---|---|---|---|---|
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 |
绘制的步骤是:
11)把概率序列从高到低排序,得到顺序(6:0.9,5:0.8,4:0.7,2:0.6,3:0.5,1:0.4);
12)从概率最大开始取一个点作为正类,取到点6,计算得到TPR=0.0,FPR=0.25;
13)从概率最大开始,再取一个点作为正类,取到点5,计算得到TPR=0.0,FPR=0.5;
14)再从最大开始取一个点作为正类,取到点4,计算得到TPR=0.0,FPR=0.75;
15)以此类推,得到6对TPR和FPR。
然后把这6对数据组成6个点(0.25,0.0),(0.5,0.0),(0.75,0.0),(1.0,0.0),(1.0,0.5),(1.0,1.0)。
这6个点在二维坐标系中能绘出来。
看看图中,那个就是ROC曲线。
2 意义解释
如上图的例子,总共6个点,2个正样本,4个负样本,取一个正样本和一个负样本的情况总共有8种。
上面的第一种情况,从上往下取,无论怎么取,正样本的概率总在负样本之上,所以分对的概率为1,AUC=1。再看那个ROC曲线,它的积分是什么?也是1,ROC曲线的积分与AUC相等。
上面第二种情况,如果取到了样本2和3,那就分错了,其他情况都分对了;所以分对的概率是0.875,AUC=0.875。再看那个ROC曲线,它的积分也是0.875,ROC曲线的积分与AUC相等。
上面的第三种情况,无论怎么取,都是分错的,所以分对的概率是0,AUC=0.0。再看ROC曲线,它的积分也是0.0,ROC曲线的积分与AUC相等。
很牛吧,其实AUC的意思是——Area Under roc Curve,就是ROC曲线的积分,也是ROC曲线下面的面积。
绘制ROC曲线的意义很明显,不断地把可能分错的情况扣除掉,从概率最高往下取的点,每有一个是负样本,就会导致分错排在它下面的所有正样本,所以要把它下面的正样本数扣除掉(1-TPR,剩下的正样本的比例)。总的ROC曲线绘制出来了,AUC就定了,分对的概率也能求出来了。