1:逻辑回归介绍
逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。
1 逻辑回归的应用场景
- 广告点击率
- 是否为垃圾邮件
- 是否患病
- 金融诈骗
- 虚假账号
看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器
2 逻辑回归的原理
要想掌握逻辑回归,必须掌握两点:
逻辑回归中,其输入值是什么
如何判断逻辑回归的输出
2.1 输入
逻辑回归的输入就是一个线性回归的结果。
2.2 激活函数
-
sigmoid函数
-
判断标准
- 回归的结果输入到sigmoid函数当中
- 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值
- 逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)
输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。
所以接下来我们回忆之前的线性回归预测结果我们用均方误差衡量,那如果对于逻辑回归,我们预测的结果不对该怎么去衡量这个损失呢?我们来看这样一张图
那么如何去衡量逻辑回归的预测结果与真实结果的差异呢?
3 损失以及优化
3.1 损失
逻辑回归的损失,称之为对数似然损失,公式如下:
- 分开类别:
怎么理解单个的式子呢?这个要根据log的函数图像来理解
- 综合完整损失函数
看到这个式子,其实跟我们讲的信息熵类似。
接下来我们呢就带入上面那个例子来计算一遍,就能理解意义了。
我们已经知道,log(P), P值越大,结果越小,所以我们可以对着这个损失的式子去分析
3.2 优化
同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。
4.逻辑回归api介绍
-
sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)
-
solver可选参数:{'liblinear', 'sag', 'saga','newton-cg', 'lbfgs'},
- 默认: 'liblinear';用于优化问题的算法。
-
对于小数据集来说,“liblinear”是个不错的选择,而“sag”和'saga'对于大型数据集会更快。
-
对于多类问题,只有'newton-cg', 'sag', 'saga'和'lbfgs'可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
-
penalty:正则化的种类
-
C:正则化力度
-
默认将类别数量少的当做正例
LogisticRegression方法相当于 SGDClassifier(loss="log", penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)
5: 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测
- 数据介绍
原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/
数据描述
(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤
相关的医学特征,最后一列表示肿瘤类型的数值。
(2)包含16个缺失值,用”?”标出。
1 分析
1.获取数据
2.基本数据处理
2.1 缺失值处理
2.2 确定特征值,目标值
2.3 分割数据
3.特征工程(标准化)
4.机器学习(逻辑回归)
5.模型评估
2 代码
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression #1: 获取数据 names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class'] data = pd.read_csv("./data/breast-cancer-wisconsin.data", names=names) #2:数据的基本处理 #2.1 缺失值处理 # print(pd.isnull(data)) # 判断是否有缺失值 # print(data.query('')) data = data.replace(to_replace='?',value=np.NaN) data = data.dropna() #删除缺失值 x = data.iloc[:,1:10] # 特征值 # print(x.head()) y = data["Class"] # 目标值 # print(y) #2.2 分割数据 x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=22) #3: 特征工程化 transfer = StandardScaler() x_train = transfer.fit_transform(x_train) x_test = transfer.fit_transform(x_test) # 4: 机器学习 逻辑回归 estimator = LogisticRegression() estimator.fit(x_train,y_train) #5: 模型评估 y_predict = estimator.predict(x_test) print(y_predict) print(estimator.score(x_test, y_test)) # print(data.head())