few-shot-learning for object detection
github https://github.com/LiuXinyu12378/few-shot-learning-for-object-detection
train.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | from __future__ import print_function import sys import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.backends.cudnn as cudnn from torchvision import datasets, transforms from torch.autograd import Variable from tqdm import tqdm import dataset import random import math import os from utils import * from cfg import parse_cfg, cfg from darknet import Darknet import pdb # Training settings # datacfg = sys.argv[1] # darknetcfg = parse_cfg(sys.argv[2]) # learnetcfg = parse_cfg(sys.argv[3]) datacfg = "cfg/fewyolov3_voc.data" darknetcfg = parse_cfg( "cfg/darknet_yolov3_spp.cfg" ) learnetcfg = parse_cfg( "cfg/reweighting_net.cfg" ) weightfile = "tmp/000050.weights" if len (sys.argv) = = 5 : weightfile = sys.argv[ 4 ] data_options = read_data_cfg(datacfg) net_options = darknetcfg[ 0 ] meta_options = learnetcfg[ 0 ] # Configure options cfg.config_data(data_options) cfg.config_meta(meta_options) cfg.config_net(net_options) # Parameters metadict = data_options[ 'meta' ] trainlist = data_options[ 'train' ] testlist = data_options[ 'valid' ] backupdir = data_options[ 'backup' ] gpus = data_options[ 'gpus' ] # e.g. 0,1,2,3 ngpus = len (gpus.split( ',' )) num_workers = int (data_options[ 'num_workers' ]) batch_size = int (net_options[ 'batch' ]) print ( "batch_size:" ,batch_size) max_batches = int (net_options[ 'max_batches' ]) learning_rate = float (data_options[ 'learning_rate' ]) momentum = float (net_options[ 'momentum' ]) decay = float (net_options[ 'decay' ]) steps = [ float (step) for step in data_options[ 'steps' ].split( ',' )] scales = [ float (scale) for scale in data_options[ 'scales' ].split( ',' )] # Train parameters use_cuda = True seed = int (time.time()) ## -------------------------------------------------------------------------- ## MAIN backupdir = cfg.backup print ( 'logging to ' + backupdir) if not os.path.exists(backupdir): os.makedirs(backupdir) torch.manual_seed(seed) if use_cuda: os.environ[ 'CUDA_VISIBLE_DEVICES' ] = gpus torch.cuda.manual_seed(seed) model = Darknet(darknetcfg, learnetcfg) region_loss = model.loss model.print_network() # if len(sys.argv) == 5: model.load_weights(weightfile) ################################################### ### Meta-model parameters region_loss.seen = model.seen processed_batches = 0 if cfg.tuning else model.seen / batch_size trainlist = dataset.build_dataset(data_options) nsamples = len (trainlist) init_width = model.width init_height = model.height init_epoch = 0 if cfg.tuning else model.seen / nsamples max_epochs = max_batches * batch_size / nsamples + 1 max_epochs = int (math.ceil(cfg.max_epoch * 1. / cfg.repeat)) if cfg.tuning else max_epochs print (cfg.repeat, nsamples, max_batches, batch_size) print (num_workers) kwargs = { 'num_workers' : num_workers, 'pin_memory' : True } if use_cuda else {} if use_cuda: if ngpus > 1 : model = torch.nn.DataParallel(model).cuda() else : model = model.cuda() optimizer = optim.Adam(model.parameters(), lr = learning_rate) def adjust_learning_rate(optimizer, processed_batches): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = learning_rate for i in range ( len (steps)): scale = scales[i] if i < len (scales) else 1 if processed_batches > = steps[i]: lr = lr * scale if processed_batches = = steps[i]: break else : break for param_group in optimizer.param_groups: param_group[ 'lr' ] = lr return lr def train(epoch): global processed_batches t0 = time.time() if ngpus > 1 : cur_model = model.module else : cur_model = model train_loader = torch.utils.data.DataLoader( dataset.listDataset(trainlist, shape = (init_width, init_height), shuffle = False , transform = transforms.Compose([ transforms.ToTensor(), ]), train = True , seen = cur_model.seen, batch_size = batch_size, num_workers = num_workers), batch_size = batch_size, shuffle = False , * * kwargs) metaset = dataset.MetaDataset(metafiles = metadict, train = True ) metaloader = torch.utils.data.DataLoader( metaset, batch_size = metaset.batch_size, shuffle = False , num_workers = num_workers, pin_memory = True ) metaloader = iter (metaloader) lr = adjust_learning_rate(optimizer, processed_batches) logging( 'epoch %d/%d, processed %d samples, lr %e' % (epoch, max_epochs, epoch * len (train_loader.dataset), lr)) model.train() t1 = time.time() avg_time = torch.zeros( 9 ) with tqdm(total = train_loader.__len__()) as t: for batch_idx, (data, target) in enumerate (train_loader): metax, mask = metaloader. next () t2 = time.time() adjust_learning_rate(optimizer, processed_batches) processed_batches = processed_batches + 1 if use_cuda: data = data.cuda() metax = metax.cuda() mask = mask.cuda() # target= target.cuda() t3 = time.time() data, target = Variable(data), Variable(target) metax, mask = Variable(metax), Variable(mask) t4 = time.time() optimizer.zero_grad() t5 = time.time() output = model(data, metax, mask) t6 = time.time() region_loss.seen = region_loss.seen + data.data.size( 0 ) cur_model.seen = region_loss.seen region_loss.input_size = (data.data.size( 2 ), data.data.size( 3 )) loss,loss_box,loss_conf,loss_cls,cls_acc,recall50,recall75,nProposals = region_loss(output, target) t.set_description( 'Epoch %d' % epoch) t.set_postfix(loss = loss.item(), loss_bbox = loss_box,loss_conf = loss_conf,loss_cls = loss_cls, cls_acc = cls_acc, recall50 = recall50, recall75 = recall75,Proposals = nProposals) t.update() t7 = time.time() loss.backward() t8 = time.time() optimizer.step() t9 = time.time() if False and batch_idx > 1 : avg_time[ 0 ] = avg_time[ 0 ] + (t2 - t1) avg_time[ 1 ] = avg_time[ 1 ] + (t3 - t2) avg_time[ 2 ] = avg_time[ 2 ] + (t4 - t3) avg_time[ 3 ] = avg_time[ 3 ] + (t5 - t4) avg_time[ 4 ] = avg_time[ 4 ] + (t6 - t5) avg_time[ 5 ] = avg_time[ 5 ] + (t7 - t6) avg_time[ 6 ] = avg_time[ 6 ] + (t8 - t7) avg_time[ 7 ] = avg_time[ 7 ] + (t9 - t8) avg_time[ 8 ] = avg_time[ 8 ] + (t9 - t1) print ( '-------------------------------' ) print ( ' load data : %f' % (avg_time[ 0 ] / (batch_idx))) print ( ' cpu to cuda : %f' % (avg_time[ 1 ] / (batch_idx))) print ( 'cuda to variable : %f' % (avg_time[ 2 ] / (batch_idx))) print ( ' zero_grad : %f' % (avg_time[ 3 ] / (batch_idx))) print ( ' forward feature : %f' % (avg_time[ 4 ] / (batch_idx))) print ( ' forward loss : %f' % (avg_time[ 5 ] / (batch_idx))) print ( ' backward : %f' % (avg_time[ 6 ] / (batch_idx))) print ( ' step : %f' % (avg_time[ 7 ] / (batch_idx))) print ( ' total : %f' % (avg_time[ 8 ] / (batch_idx))) t1 = time.time() print ('') t1 = time.time() logging( 'training with %f samples/s' % ( len (train_loader.dataset) / (t1 - t0))) if (epoch + 1 ) % cfg.save_interval = = 0 : logging( 'save weights to %s/%06d.weights' % (backupdir, epoch + 1 )) cur_model.save_weights( '%s/%06d.weights' % (backupdir, epoch + 1 )) init_epoch = int (init_epoch) max_epochs = int (max_epochs) print ( "init_epoch:" ,init_epoch) print ( "max_epochs:" ,max_epochs) for epoch in range (init_epoch, max_epochs): train(epoch) |
region_loss.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | import time import torch import math import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.autograd import Variable from utils import * from cfg import cfg from numbers import Number from random import random, randint import pdb def neg_filter(pred_boxes, target, withids = False ): assert pred_boxes.size( 0 ) = = target.size( 0 ) if cfg.neg_ratio = = 'full' : inds = list ( range (pred_boxes.size( 0 ))) elif isinstance (cfg.neg_ratio, Number): flags = torch. sum (target, 1 ) ! = 0 flags = flags.cpu().data.tolist() ratio = cfg.neg_ratio * sum (flags) * 1. / ( len (flags) - sum (flags)) if ratio > = 1 : inds = list ( range (pred_boxes.size( 0 ))) else : flags = [ 0 if f = = 0 and random() > ratio else 1 for f in flags] inds = np.argwhere(flags).squeeze() pred_boxes, target = pred_boxes[inds], target[inds] else : raise NotImplementedError( 'neg_ratio not recognized' ) if withids: return pred_boxes, target, inds else : return pred_boxes, target def neg_filter_v2(pred_boxes, target, withids = False ): assert pred_boxes.size( 0 ) = = target.size( 0 ) if cfg.neg_ratio = = 'full' : inds = list ( range (pred_boxes.size( 0 ))) elif isinstance (cfg.neg_ratio, Number): flags = torch. sum (target, 1 ) ! = 0 flags = flags.cpu().data.tolist() ratio = cfg.neg_ratio * sum (flags) * 1. / ( len (flags) - sum (flags)) if ratio > = 1 : inds = list ( range (pred_boxes.size( 0 ))) else : flags = [ 0 if f = = 0 and random() > ratio else 1 for f in flags] if sum (flags) = = 0 : flags[randint( 0 , len (flags) - 1 )] = 1 inds = np.nonzero(flags)[ 0 ] pred_boxes, target = pred_boxes[inds], target[inds] else : raise NotImplementedError( 'neg_ratio not recognized' ) if withids: return pred_boxes, target, inds else : return pred_boxes, target def build_targets(pred_boxes, target, conf, anchors, num_anchors, feature_size, input_size, ignore_thresh): nB = target.size( 0 ) nA = num_anchors # print('anchor_step: ', anchor_step) obj_mask = torch.cuda.ByteTensor(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).fill_( 0 ) noobj_mask = torch.cuda.ByteTensor(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).fill_( 1 ) tx = torch.zeros(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).cuda() ty = torch.zeros(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).cuda() tw = torch.zeros(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).cuda() th = torch.zeros(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).cuda() tcls = torch.zeros(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).cuda() iou_scores = torch.zeros(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).cuda() tboxes = target.view( - 1 , 5 ) nonzero_ind = tboxes[:, 3 ] > 0 tboxes = tboxes[nonzero_ind.unsqueeze( 1 ).repeat( 1 , 5 )].view( - 1 , 5 ) ind_B = torch.linspace( 0 , nB - 1 , nB).unsqueeze( 1 ).repeat( 1 , 50 ).view( - 1 ). long ().cuda() ind_B = ind_B[nonzero_ind] gx = (tboxes[:, 1 ] * feature_size[ 1 ]). float () gy = (tboxes[:, 2 ] * feature_size[ 0 ]). float () gw = (tboxes[:, 3 ] * input_size[ 1 ]). float () gh = (tboxes[:, 4 ] * input_size[ 0 ]). float () aw = anchors[:, 0 ] ah = anchors[:, 1 ] nbox = tboxes.size( 0 ) gt_box = torch.cat([torch.zeros( 1 , nbox).cuda(), torch.zeros( 1 , nbox).cuda(), gw.unsqueeze( 0 ), gh.unsqueeze( 0 )], 0 ) anchor_box = torch.cat([torch.zeros( 1 , nA).cuda(), torch.zeros( 1 , nA).cuda(), aw.unsqueeze( 0 ), ah.unsqueeze( 0 )], 0 ) ious = bbox_ious(gt_box.unsqueeze( 2 ).repeat( 1 , 1 , nA), anchor_box.unsqueeze( 1 ).repeat( 1 , nbox, 1 ), x1y1x2y2 = False ) best_ious, best_a = ious. max ( 1 ) gj = gy. long () gi = gx. long () obj_mask[ind_B, best_a, gj, gi] = 1 noobj_mask[ind_B, best_a, gj, gi] = 0 for i, iou in enumerate (ious): if (iou > ignore_thresh). sum (): noobj_mask[ind_B[i:i + 1 ], (iou > ignore_thresh).nonzero().squeeze( 1 ), gj[i:i + 1 ], gi[i:i + 1 ]] = 0 tx[ind_B, best_a, gj, gi] = gx - gx.floor() ty[ind_B, best_a, gj, gi] = gy - gy.floor() tw[ind_B, best_a, gj, gi] = torch.log(gw / anchors[best_a][:, 0 ]) th[ind_B, best_a, gj, gi] = torch.log(gh / anchors[best_a][:, 1 ]) tcls[ind_B, best_a, gj, gi] = tboxes[:, 0 ]. float () tconf = obj_mask. float () pred_boxes = pred_boxes.contiguous().view(nB, nA, feature_size[ 0 ], feature_size[ 1 ], 4 ).cuda() conf = conf.contiguous().view(nB, nA, feature_size[ 0 ], feature_size[ 1 ]).data target_boxes = torch.cat([(tboxes[:, 1 ] * input_size[ 1 ]). float ().unsqueeze( 0 ), (tboxes[:, 2 ] * input_size[ 0 ]). float ().unsqueeze( 0 ), gw.unsqueeze( 0 ), gh.unsqueeze( 0 )], 0 ) iou_scores[ind_B, best_a, gj, gi] = bbox_ious(pred_boxes[ind_B, best_a, gj, gi].t(), target_boxes, x1y1x2y2 = False ) conf50 = (conf[ind_B, best_a, gj, gi] > 0.5 ). float () detected50 = (iou_scores[ind_B, best_a, gj, gi] > 0.5 ). float () * conf50 detected75 = (iou_scores[ind_B, best_a, gj, gi] > 0.75 ). float () * conf50 return nbox, iou_scores, obj_mask, noobj_mask, tx, ty, tw, th, tconf, tcls, detected50, detected75 class RegionLoss(nn.Module): def __init__( self , num_classes = 0 , anchors = [], num_anchors = 1 ): super (RegionLoss, self ).__init__() self .num_classes = num_classes self .anchors = anchors self .num_anchors = num_anchors self .anchor_step = len (anchors) / num_anchors self .coord_scale = 1 self .noobject_scale = 1 self .object_scale = 5 self .class_scale = 1 self .thresh = 0.6 self .seen = 0 def forward( self , output, target): # import pdb; pdb.set_trace() # output : BxAs*(4+1+num_classes)*H*W # if target.dim() == 3: # # target : B * n_cls * l # l = target.size(-1) # target = target.permute(1,0,2).contiguous().view(-1, l) if target.dim() = = 3 : target = target.view( - 1 , target.size( - 1 )) bef = target.size( 0 ) output, target = neg_filter(output, target) # print("{}/{}".format(target.size(0), bef)) t0 = time.time() nB = output.data.size( 0 ) nA = self .num_anchors nC = self .num_classes nH = output.data.size( 2 ) nW = output.data.size( 3 ) output = output.view(nB, nA, ( 5 + nC), nH, nW) x = F.sigmoid(output.index_select( 2 , Variable(torch.cuda.LongTensor([ 0 ]))).view(nB, nA, nH, nW)) y = F.sigmoid(output.index_select( 2 , Variable(torch.cuda.LongTensor([ 1 ]))).view(nB, nA, nH, nW)) w = output.index_select( 2 , Variable(torch.cuda.LongTensor([ 2 ]))).view(nB, nA, nH, nW) h = output.index_select( 2 , Variable(torch.cuda.LongTensor([ 3 ]))).view(nB, nA, nH, nW) conf = F.sigmoid(output.index_select( 2 , Variable(torch.cuda.LongTensor([ 4 ]))).view(nB, nA, nH, nW)) # [nB, nA, nC, nW, nH] | (bs, 5, 1, 13, 13) cls = output.index_select( 2 , Variable(torch.linspace( 5 , 5 + nC - 1 , nC). long ().cuda())) cls = cls .view(nB * nA, nC, nH * nW).transpose( 1 , 2 ).contiguous().view(nB * nA * nH * nW, nC) t1 = time.time() pred_boxes = torch.cuda.FloatTensor( 4 , nB * nA * nH * nW) grid_x = torch.linspace( 0 , nW - 1 , nW).repeat(nH, 1 ).repeat(nB * nA, 1 , 1 ).view(nB * nA * nH * nW).cuda() grid_y = torch.linspace( 0 , nH - 1 , nH).repeat(nW, 1 ).t().repeat(nB * nA, 1 , 1 ).view(nB * nA * nH * nW).cuda() anchor_w = torch.Tensor( self .anchors).view(nA, self .anchor_step).index_select( 1 , torch.LongTensor([ 0 ])).cuda() anchor_h = torch.Tensor( self .anchors).view(nA, self .anchor_step).index_select( 1 , torch.LongTensor([ 1 ])).cuda() anchor_w = anchor_w.repeat(nB, 1 ).repeat( 1 , 1 , nH * nW).view(nB * nA * nH * nW) anchor_h = anchor_h.repeat(nB, 1 ).repeat( 1 , 1 , nH * nW).view(nB * nA * nH * nW) pred_boxes[ 0 ] = x.data + grid_x pred_boxes[ 1 ] = y.data + grid_y pred_boxes[ 2 ] = torch.exp(w.data) * anchor_w pred_boxes[ 3 ] = torch.exp(h.data) * anchor_h pred_boxes = convert2cpu(pred_boxes.transpose( 0 , 1 ).contiguous().view( - 1 , 4 )) t2 = time.time() nGT, nCorrect, coord_mask, conf_mask, cls_mask, tx, ty, tw, th, tconf, tcls = build_targets(pred_boxes, target.data, self .anchors, nA, nC, \ nH, nW, self .noobject_scale, self .object_scale, self .thresh, self .seen) cls_mask = (cls_mask = = 1 ) if cfg.metayolo: tcls.zero_() nProposals = int ((conf > 0.25 ). float (). sum ().data[ 0 ]) tx = Variable(tx.cuda()) ty = Variable(ty.cuda()) tw = Variable(tw.cuda()) th = Variable(th.cuda()) tconf = Variable(tconf.cuda()) tcls = Variable(tcls.view( - 1 )[cls_mask]. long ().cuda()) coord_mask = Variable(coord_mask.cuda()) conf_mask = Variable(conf_mask.cuda().sqrt()) cls_mask = Variable(cls_mask.view( - 1 , 1 ).repeat( 1 , nC).cuda()) cls = cls [cls_mask].view( - 1 , nC) t3 = time.time() loss_x = self .coord_scale * nn.MSELoss(size_average = False )(x * coord_mask, tx * coord_mask) / 2.0 loss_y = self .coord_scale * nn.MSELoss(size_average = False )(y * coord_mask, ty * coord_mask) / 2.0 loss_w = self .coord_scale * nn.MSELoss(size_average = False )(w * coord_mask, tw * coord_mask) / 2.0 loss_h = self .coord_scale * nn.MSELoss(size_average = False )(h * coord_mask, th * coord_mask) / 2.0 loss_conf = nn.MSELoss(size_average = False )(conf * conf_mask, tconf * conf_mask) / 2.0 loss_cls = self .class_scale * nn.CrossEntropyLoss(size_average = False )( cls , tcls) loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls t4 = time.time() if False : print ( '-----------------------------------' ) print ( ' activation : %f' % (t1 - t0)) print ( ' create pred_boxes : %f' % (t2 - t1)) print ( ' build targets : %f' % (t3 - t2)) print ( ' create loss : %f' % (t4 - t3)) print ( ' total : %f' % (t4 - t0)) print ( '%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, total %f' % ( self .seen, nGT, nCorrect, nProposals, loss_x.data[ 0 ], loss_y.data[ 0 ], loss_w.data[ 0 ], loss_h.data[ 0 ], loss_conf.data[ 0 ], loss_cls.data[ 0 ], loss.data[ 0 ])) return loss class RegionLossV2(nn.Module): """ Yolo region loss + Softmax classification across meta-inputs """ def __init__( self , num_classes = 0 , anchors = [], num_anchors = 1 , input_size = ( 832 , 832 )): super (RegionLossV2, self ).__init__() self .num_classes = num_classes self .anchors = anchors self .num_anchors = num_anchors self .coord_scale = 1 self .class_scale = 1 self .obj_scale = 1 self .noobj_scale = 100 self .thresh = 0.5 self .seen = 0 self .input_size = input_size self .feature_scale = [ 32 , 16 , 8 ] print ( 'class_scale' , self .class_scale) def forward( self , output, target): # output : (bs*cs, nA*(5+1), N) # target : (bs, cs, 50*5) # Get all classification prediction # pdb.set_trace() bs = target.size( 0 ) cs = target.size( 1 ) nA = self .num_anchors nC = self .num_classes N = output.data.size( 2 ) # feature_size = [[26, 26], [52, 52], [104, 104]] cls = output.view(output.size( 0 ), nA, ( 5 + nC), N) cls = cls .index_select( 2 , Variable(torch.linspace( 5 , 5 + nC - 1 , nC). long ().cuda())).squeeze() cls = cls .view(bs, cs, nA * N).transpose( 1 , 2 ).contiguous().view(bs * nA * N, cs) cls_conf = F.softmax( cls , 1 ) _, cls_max_ids = torch. max (cls_conf, 1 ) cls_max_ids = cls_max_ids.data pre_cls_mask = torch.zeros(bs * nA * N, cs).cuda() pre_cls_mask[torch.linspace( 0 , bs * nA * N - 1 , bs * nA * N). long ().cuda(), cls_max_ids] = 1 pre_cls_mask = pre_cls_mask.view(bs, nA * N, cs).transpose( 1 , 2 ).contiguous().view(bs * cs, nA, N) # Rearrange target and perform filtering operation target = target.view( - 1 , target.size( - 1 )) # bef = target.size(0) output, target, inds = neg_filter_v2(output, target, withids = True ) counts, _ = np.histogram(inds, bins = bs, range = ( 0 , bs * cs)) # print("{}/{}".format(target.size(0), bef)) pre_cls_mask = pre_cls_mask[inds] t0 = time.time() nB = output.data.size( 0 ) output = output.view(nB, nA, ( 5 + nC), N) # (nB, nA, (5+nC), N) x = F.sigmoid(output.index_select( 2 , Variable(torch.cuda.LongTensor([ 0 ]))).squeeze( 2 )) # (nB, nA, N) y = F.sigmoid(output.index_select( 2 , Variable(torch.cuda.LongTensor([ 1 ]))).squeeze( 2 )) w = output.index_select( 2 , Variable(torch.cuda.LongTensor([ 2 ]))).squeeze( 2 ) h = output.index_select( 2 , Variable(torch.cuda.LongTensor([ 3 ]))).squeeze( 2 ) conf = F.sigmoid(output.index_select( 2 , Variable(torch.cuda.LongTensor([ 4 ]))).squeeze( 2 )) # [nB, nA, nC, nW, nH] | (bs, 5, 1, 13, 13) # cls = output.index_select(2, Variable(torch.linspace(5,5+nC-1,nC).long().cuda())) # cls = cls.view(nB*nA, nC, nH*nW).transpose(1,2).contiguous().view(nB*nA*nH*nW, nC) t1 = time.time() pred_boxes = torch.cuda.FloatTensor( 4 , nB, nA, N) grid_x = [] grid_y = [] anchor_w = [] anchor_h = [] scale = [] feature_size = [] for fs in self .feature_scale: feature_h = self .input_size[ 0 ] / / fs feature_w = self .input_size[ 1 ] / / fs # print("feature_h:",feature_h) # print("feature_w:",feature_w) feature_size.append([feature_h, feature_w]) grid_x.append(torch.linspace( 0 , feature_w - 1 , feature_w).repeat(feature_h, 1 ) \ .repeat(nB * nA, 1 , 1 ).view(nB, nA, feature_h * feature_w).cuda()) grid_y.append(torch.linspace( 0 , feature_h - 1 , feature_h).repeat(feature_w, 1 ).t() \ .repeat(nB * nA, 1 , 1 ).view(nB, nA, feature_h * feature_w).cuda()) scale.append((torch.ones(nB, nA, feature_h * feature_w) * fs).cuda()) grid_x = torch.cat(grid_x, 2 ) # (nB, nA, N) grid_y = torch.cat(grid_y, 2 ) scale = torch.cat(scale, 2 ) for i in range ( 3 ): aw = torch.Tensor( self .anchors[ 6 * i: 6 * (i + 1 )]).view(nA, - 1 ) \ .index_select( 1 , torch.LongTensor([ 0 ])).cuda() ah = torch.Tensor( self .anchors[ 6 * i: 6 * (i + 1 )]).view(nA, - 1 ) \ .index_select( 1 , torch.LongTensor([ 1 ])).cuda() anchor_w.append(aw.repeat(nB, feature_size[i][ 0 ] * feature_size[i][ 1 ]) \ .view(nB, nA, feature_size[i][ 0 ] * feature_size[i][ 1 ])) anchor_h.append(ah.repeat(nB, feature_size[i][ 0 ] * feature_size[i][ 1 ]) \ .view(nB, nA, feature_size[i][ 0 ] * feature_size[i][ 1 ])) anchor_w = torch.cat(anchor_w, 2 ) anchor_h = torch.cat(anchor_h, 2 ) pred_boxes[ 0 ] = (x.data + grid_x) * scale pred_boxes[ 1 ] = (y.data + grid_y) * scale pred_boxes[ 2 ] = torch.exp(w.data) * anchor_w pred_boxes[ 3 ] = torch.exp(h.data) * anchor_h pred_boxes = convert2cpu(pred_boxes.permute( 1 , 2 , 3 , 0 ).contiguous()) # (nB, nA, N, 4) t2 = time.time() nGT = 0 iou_scores = [] obj_mask = [] noobj_mask = [] tx = [] ty = [] tw = [] th = [] tconf = [] tcls = [] start_N = 0 detected50 = torch.zeros( 0 ) detected75 = torch.zeros( 0 ) for imap in range ( 3 ): nGT, iou_scores_temp, obj_mask_temp, noobj_mask_temp, tx_temp, ty_temp, tw_temp, th_temp, tconf_temp, \ tcls_temp, detected50_temp, detected75_temp = build_targets( pred_boxes[:, :, start_N:start_N + feature_size[imap][ 0 ] * feature_size[imap][ 1 ], :], target.data.cuda(), conf[:, :, start_N:start_N + feature_size[imap][ 0 ] * feature_size[imap][ 1 ]], torch.Tensor( self .anchors[ 6 * imap: 6 * (imap + 1 )]).view(nA, - 1 ).cuda(), nA, feature_size[imap], self .input_size, self .thresh) if not len (detected50): detected50 = torch.zeros(nGT).cuda() if not len (detected75): detected75 = torch.zeros(nGT).cuda() detected50 + = detected50_temp detected75 + = detected75_temp start_N + = feature_size[imap][ 0 ] * feature_size[imap][ 1 ] iou_scores.append(iou_scores_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) obj_mask.append(obj_mask_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) noobj_mask.append(noobj_mask_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) tx.append(tx_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) ty.append(ty_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) tw.append(tw_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) th.append(th_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) tconf.append(tconf_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) tcls.append(tcls_temp.view(nB, nA, feature_size[imap][ 0 ] * feature_size[imap][ 1 ])) iou_scores = torch.cat(iou_scores, 2 ) obj_mask = torch.cat(obj_mask, 2 ) noobj_mask = torch.cat(noobj_mask, 2 ) tx = torch.cat(tx, 2 ) ty = torch.cat(ty, 2 ) tw = torch.cat(tw, 2 ) th = torch.cat(th, 2 ) tconf = torch.cat(tconf, 2 ) tcls = torch.cat(tcls, 2 ) # Take care of class mask idx_start = 0 cls_mask_list = [] tcls_list = [] for i in range ( len (counts)): if counts[i] = = 0 : cur_mask = torch.zeros(nA, N).cuda() cur_tcls = torch.zeros(nA, N).cuda() else : cur_mask = torch. sum (obj_mask[idx_start:idx_start + counts[i]]. float (), dim = 0 ) cur_tcls = torch. sum (tcls[idx_start:idx_start + counts[i]], dim = 0 ) cls_mask_list.append(cur_mask) tcls_list.append(cur_tcls) idx_start + = counts[i] cls_mask = torch.stack(cls_mask_list) # (bs, nA, N) tcls = torch.stack(tcls_list) cls_mask = (cls_mask = = 1 ) conf50 = (conf > 0.5 ). float ().data iou50 = (iou_scores > 0.5 ). float () detected_mask = conf50 * tconf precision = torch. sum (iou50 * detected_mask) / (conf50. sum () + 1e - 16 ) detected50 = (detected50 > 0 ). float () detected75 = (detected75 > 0 ). float () recall50 = detected50. sum () / (nGT + 1e - 16 ) recall75 = detected75. sum () / (nGT + 1e - 16 ) nProposals = int ((conf > 0.25 ). float (). sum ().item()) tx = Variable(tx) ty = Variable(ty) tw = Variable(tw) th = Variable(th) tconf = Variable(tconf) obj_mask = Variable(obj_mask. bool ()) noobj_mask = Variable(noobj_mask. bool ()) # cls_mask = Variable(cls_mask.view(-1, 1).repeat(1,cs).cuda()) cls = cls [Variable(cls_mask.view( - 1 , 1 ).repeat( 1 , cs))].view( - 1 , cs) cls_max_ids = cls_max_ids[cls_mask.view( - 1 )] tcls = Variable(tcls[cls_mask]. long ()) cls_acc = float (torch. sum (cls_max_ids = = tcls.data)) / (cls_max_ids.numel() + 1e - 16 ) ClassificationLoss = nn.CrossEntropyLoss() MseLoss = nn.MSELoss() BceLoss = nn.BCELoss() t3 = time.time() loss_x = self .coord_scale * MseLoss(x[obj_mask], tx[obj_mask]) loss_y = self .coord_scale * MseLoss(y[obj_mask], ty[obj_mask]) loss_w = self .coord_scale * MseLoss(w[obj_mask], tw[obj_mask]) loss_h = self .coord_scale * MseLoss(h[obj_mask], th[obj_mask]) loss_conf_obj = BceLoss(conf[obj_mask], tconf[obj_mask]) loss_conf_noobj = BceLoss(conf[noobj_mask], tconf[noobj_mask]) loss_conf = self .obj_scale * loss_conf_obj + self .noobj_scale * loss_conf_noobj if len ( cls ): loss_cls = self .class_scale * ClassificationLoss( cls , tcls) else : loss_cls = Variable(torch.Tensor([ 0 ]). float ().cuda()) # # pdb.set_trace() # ids = [9,11,12,16] # new_cls, new_tcls = select_classes(cls, tcls, ids) # new_tcls = Variable(torch.from_numpy(new_tcls).long().cuda()) # loss_cls_new = self.class_scale * nn.CrossEntropyLoss(size_average=False)(new_cls, new_tcls) # loss_cls_new *= 10 # loss_cls += loss_cls_new loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls t4 = time.time() if False : print ( '-----------------------------------' ) print ( ' activation : %f' % (t1 - t0)) print ( ' create pred_boxes : %f' % (t2 - t1)) print ( ' build targets : %f' % (t3 - t2)) print ( ' create loss : %f' % (t4 - t3)) print ( ' total : %f' % (t4 - t0)) # print( # '%d: nGT %d, precision %f, recall50 %f, recall75 %f, cls_acc %f, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, total %f' % \ # (self.seen, nGT, precision, recall50, recall75, cls_acc, loss_x.item(), loss_y.item(), \ # loss_w.item(), loss_h.item(), loss_conf.item(), loss_cls.item(), loss.item())) # print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, cls_new %f, total %f' % (self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_w.data[0], loss_h.data[0], loss_conf.data[0], loss_cls.data[0], loss_cls_new.data[0], loss.data[0])) return loss,loss_x.item() + loss_y.item() + loss_w.item() + loss_h.item(),loss_conf.item(),loss_cls.item(),cls_acc,recall50.item(),recall75.item(),nProposals def select_classes(pred, tgt, ids): # convert tgt to numpy tgt = tgt.cpu().data.numpy() new_tgt = [(tgt = = d) * i for i, d in enumerate (ids)] new_tgt = np. max (np.stack(new_tgt), axis = 0 ) idxes = np.argwhere(new_tgt > 0 ).squeeze() new_pred = pred[idxes] new_pred = new_pred[:, ids] new_tgt = new_tgt[idxes] return new_pred, new_tgt |
多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。
标签:
人工智能
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?