点此进入CSDN

点此添加QQ好友 加载失败时会显示




tensorflow1.0 构建神经网络做图片分类

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

def add_layer(inputs,in_size,out_size,activation_function=None):
    Weight = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size])+0.1)
    Wx_plus_b = tf.matmul(inputs,Weight)+biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

def compute_accuracy(v_xs,v_ys):
    global prediction
    y_pre = sess.run(prediction,feed_dict={xs:v_xs})
    correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
    return result

xs = tf.placeholder(tf.float32,[None,784])  #28*28
ys = tf.placeholder(tf.float32,[None,10])

l1 = add_layer(xs,784,128,activation_function=tf.nn.tanh)
prediction = add_layer(l1,128,10,activation_function=tf.nn.softmax)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.Session()
sess.run(tf.initialize_all_variables())


for i in range(3000):
    batch_xs,batch_ys = mnist.train.next_batch(100)
    sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
    if i %50 ==0:
        print(compute_accuracy(mnist.test.images,mnist.test.labels))

  

posted @ 2020-03-15 00:11  高颜值的殺生丸  阅读(197)  评论(0编辑  收藏  举报

作者信息

昵称:

刘新宇

园龄:4年6个月


粉丝:1209


QQ:522414928