TensorFlow keras卷积神经网络 添加L2正则化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | model = keras.models.Sequential([ #卷积层1 keras.layers.Conv2D( 32 ,kernel_size = 5 ,strides = 1 ,padding = "same" ,data_format = "channels_last" ,activation = tf.nn.relu,kernel_regularizer = keras.regularizers.l2( 0.01 )), #池化层1 keras.layers.MaxPool2D(pool_size = 2 ,strides = 2 ,padding = "same" ), #卷积层2 keras.layers.Conv2D( 64 ,kernel_size = 5 ,strides = 1 ,padding = "same" ,data_format = "channels_last" ,activation = tf.nn.relu), #池化层2 keras.layers.MaxPool2D(pool_size = 2 ,strides = 2 ,padding = "same" ), #数据整理 keras.layers.Flatten(), #1024个,全连接层 keras.layers.Dense( 1024 ,activation = tf.nn.relu), #100个,全连接层 keras.layers.Dense( 100 ,activation = tf.nn.softmax) ]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import os os.environ[ 'TF_CPP_MIN_LOG_LEVEL' ] = '2' from tensorflow.python.keras.datasets import cifar100 from tensorflow.python import keras import tensorflow as tf class CNNMnist( object ): model = keras.models.Sequential([ #卷积层1 keras.layers.Conv2D( 32 ,kernel_size = 5 ,strides = 1 ,padding = "same" ,data_format = "channels_last" ,activation = tf.nn.relu,kernel_regularizer = keras.regularizers.l2( 0.01 )), #池化层1 keras.layers.MaxPool2D(pool_size = 2 ,strides = 2 ,padding = "same" ), #卷积层2 keras.layers.Conv2D( 64 ,kernel_size = 5 ,strides = 1 ,padding = "same" ,data_format = "channels_last" ,activation = tf.nn.relu), #池化层2 keras.layers.MaxPool2D(pool_size = 2 ,strides = 2 ,padding = "same" ), #数据整理 keras.layers.Flatten(), #1024个,全连接层 keras.layers.Dense( 1024 ,activation = tf.nn.relu), #100个,全连接层 keras.layers.Dense( 100 ,activation = tf.nn.softmax) ]) def __init__( self ): ( self .x_train, self .y_train),( self .x_test, self .y_test) = cifar100.load_data() self .x_train = self .x_train / 255.0 self .x_test = self .x_test / 255.0 def compile ( self ): CNNMnist.model. compile (optimizer = keras.optimizers.Adam(),loss = keras.losses.sparse_categorical_crossentropy,metrics = [ "accuracy" ]) def fit( self ): CNNMnist.model.fit( self .x_train, self .y_train,epochs = 1 ,batch_size = 32 ) def evaluate( self ): test_loss,test_acc = CNNMnist.model.evaluate( self .x_test, self .y_test) print (test_loss,test_acc) if __name__ = = '__main__' : cnn = CNNMnist() print (CNNMnist.model.summary()) cnn. compile () cnn.fit() |
多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App