点此进入CSDN

点此添加QQ好友 加载失败时会显示




TensorFlow keras卷积神经网络 添加L2正则化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
model = keras.models.Sequential([
        #卷积层1
        keras.layers.Conv2D(32,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)),
        #池化层1
        keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
        #卷积层2
        keras.layers.Conv2D(64,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu),
        #池化层2
        keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
        #数据整理
        keras.layers.Flatten(),
        #1024个,全连接层
        keras.layers.Dense(1024,activation=tf.nn.relu),
        #100个,全连接层
        keras.layers.Dense(100,activation=tf.nn.softmax)
    ])

  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 
from tensorflow.python.keras.datasets import cifar100
from tensorflow.python import keras
import tensorflow as tf
 
 
class CNNMnist(object):
 
    model = keras.models.Sequential([
        #卷积层1
        keras.layers.Conv2D(32,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)),
        #池化层1
        keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
        #卷积层2
        keras.layers.Conv2D(64,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu),
        #池化层2
        keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
        #数据整理
        keras.layers.Flatten(),
        #1024个,全连接层
        keras.layers.Dense(1024,activation=tf.nn.relu),
        #100个,全连接层
        keras.layers.Dense(100,activation=tf.nn.softmax)
    ])
 
    def __init__(self):
        (self.x_train,self.y_train),(self.x_test,self.y_test) = cifar100.load_data()
 
        self.x_train = self.x_train/255.0
        self.x_test = self.x_test/255.0
 
 
    def compile(self):
        CNNMnist.model.compile(optimizer=keras.optimizers.Adam(),loss=keras.losses.sparse_categorical_crossentropy,metrics=["accuracy"])
 
    def fit(self):
        CNNMnist.model.fit(self.x_train,self.y_train,epochs=1,batch_size=32)
 
    def evaluate(self):
        test_loss,test_acc = CNNMnist.model.evaluate(self.x_test,self.y_test)
        print(test_loss,test_acc)
 
if __name__ == '__main__':
    cnn = CNNMnist()
    print(CNNMnist.model.summary())
    cnn.compile()
    cnn.fit()

  

posted @   高颜值的殺生丸  阅读(2999)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App

作者信息

昵称:

刘新宇

园龄:4年6个月


粉丝:1209


QQ:522414928

点击右上角即可分享
微信分享提示