题解:【CF1881F】 Minimum Maximum Distance
先钦定一个根跑出所有点的深度,这样就得到了钦定的根到所有关键点的距离最大值。换根的过程考虑对于一条边 \(u \to v\),\(v\) 子树内的点深度会减一,子树外的点深度会加一。拍到 dfs 序上就变成了区间加减一,求全局最大值,可以线段树维护。对于标记点的限制,建线段树的时候将标记点权值设为 \(dep\),其余都设为 -INF 即可。简单更改线段树维护的内容,就可以做更强的东西。这样复杂度是 \(\mathcal O(n \log n)\)。
#include<bits/stdc++.h>
#define ld long double
#define ui unsigned int
#define ull unsigned long long
#define int long long
#define eb emplace_back
#define pb pop_back
#define ins insert
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define power(x) ((x)*(x))
using namespace std;
namespace FastIO
{
template<typename T=int> inline T read()
{
T s=0,w=1; char c=getchar();
while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();}
while(isdigit(c)) s=(s*10)+(c^48),c=getchar();
return s*w;
}
template<typename T> inline void read(T &s)
{
s=0; int w=1; char c=getchar();
while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();}
while(isdigit(c)) s=(s*10)+(c^48),c=getchar();
s=s*w;
}
template<typename T,typename... Args> inline void read(T &x,Args &...args)
{
read(x),read(args...);
}
template<typename T> inline void write(T x,char ch)
{
if(x<0) x=-x,putchar('-');
static char stk[25]; int top=0;
do {stk[top++]=x%10+'0',x/=10;} while(x);
while(top) putchar(stk[--top]);
if(ch!='~') putchar(ch);
return;
}
}
using namespace FastIO;
namespace MTool
{
#define TA template<typename T,typename... Args>
#define TT template<typename T>
static const int Mod=998244353;
TT inline void Swp(T &a,T &b) {T t=a;a=b;b=t;}
TT inline void cmax(T &a,T b) {a=max(a,b);}
TT inline void cmin(T &a,T b) {a=min(a,b);}
TA inline void cmax(T &a,T b,Args... args) {a=max({a,b,args...});}
TA inline void cmin(T &a,T b,Args... args) {a=min({a,b,args...});}
TT inline void Madd(T &a,T b) {a=a+b>=Mod?a+b-Mod:a+b;}
TT inline void Mdel(T &a,T b) {a=a-b<0?a-b+Mod:a-b;}
TT inline void Mmul(T &a,T b) {a=a*b%Mod;}
TT inline void Mmod(T &a) {a=(a%Mod+Mod)%Mod;}
TT inline T Cadd(T a,T b) {return a+b>=Mod?a+b-Mod:a+b;}
TT inline T Cdel(T a,T b) {return a-b<0?a-b+Mod:a-b;}
TT inline T Cmul(T a,T b) {return a*b%Mod;}
TT inline T Cmod(T a) {return (a%Mod+Mod)%Mod;}
TA inline void Madd(T &a,T b,Args... args) {Madd(a,Cadd(b,args...));}
TA inline void Mdel(T &a,T b,Args... args) {Mdel(a,Cadd(b,args...));}
TA inline void Mmul(T &a,T b,Args... args) {Mmul(a,Cmul(b,args...));}
TA inline T Cadd(T a,T b,Args... args) {return Cadd(Cadd(a,b),args...);}
TA inline T Cdel(T a,T b,Args... args) {return Cdel(Cdel(a,b),args...);}
TA inline T Cmul(T a,T b,Args... args) {return Cmul(Cmul(a,b),args...);}
TT inline T qpow(T a,T b) {int res=1; while(b) {if(b&1) Mmul(res,a); Mmul(a,a); b>>=1;} return res;}
TT inline T qmul(T a,T b) {int res=0; while(b) {if(b&1) Madd(res,a); Madd(a,a); b>>=1;} return res;}
TT inline T spow(T a,T b) {int res=1; while(b) {if(b&1) res=qmul(res,a); a=qmul(a,a); b>>=1;} return res;}
TT inline void exgcd(T A,T B,T &X,T &Y) {if(!B) return X=1,Y=0,void(); exgcd(B,A%B,Y,X),Y-=X*(A/B);}
TT inline T Ginv(T x) {T A=0,B=0; exgcd(x,Mod,A,B); return Cmod(A);}
#undef TT
#undef TA
}
using namespace MTool;
inline void file()
{
freopen(".in","r",stdin);
freopen(".out","w",stdout);
return;
}
bool Mbe;
namespace LgxTpre
{
static const int MAX=200010;
static const int inf=2147483647;
static const int INF=4557430888798830399;
int T,n,m,x,y,ans;
int dep[MAX],lt[MAX];
int L[MAX],R[MAX],id[MAX],tot;
vector<int> G[MAX];
namespace SegmentTree
{
int info[MAX<<2],tag[MAX<<2];
inline void pushup(int i) {info[i]=max(info[i<<1],info[i<<1|1]);}
inline void down(int i,int k) {tag[i]+=k,info[i]+=k;}
inline void pushdown(int i) {if(tag[i]) down(i<<1,tag[i]),down(i<<1|1,tag[i]),tag[i]=0;}
inline void build(int i,int l,int r)
{
info[i]=0,tag[i]=0;
if(l==r) return info[i]=lt[id[l]]?dep[id[l]]:-INF,void();
int mid=(l+r)>>1;
build(i<<1,l,mid),build(i<<1|1,mid+1,r);
pushup(i);
}
void modify(int i,int l,int r,int L,int R,int k)
{
if(r<L||R<l) return;
if(l<=L&&R<=r) return down(i,k);
pushdown(i); int mid=(L+R)>>1;
if(l<=mid) modify(i<<1,l,r,L,mid,k);
if(r>mid) modify(i<<1|1,l,r,mid+1,R,k);
pushup(i);
}
inline void modify(int l,int r,int k) {modify(1,l,r,1,n,k);}
}
using namespace SegmentTree;
inline void lmy_forever()
{
read(T);
while(T--)
{
read(n,m),ans=INF,tot=0,dep[0]=-1;
for(int i=1;i<=n;++i) G[i].clear(),lt[i]=L[i]=R[i]=id[i]=dep[i]=0;
for(int i=1;i<=m;++i) lt[read()]=1;
for(int i=1;i<n;++i) read(x,y),G[x].eb(y),G[y].eb(x);
auto dfs1=[&](auto dfs1,int now,int father)->void
{
L[now]=++tot,id[tot]=now,dep[now]=dep[father]+1;
for(auto to:G[now]) if(to!=father) dfs1(dfs1,to,now);
R[now]=tot;
}; dfs1(dfs1,1,0);
build(1,1,n);
auto dfs2=[&](auto dfs2,int now,int father)->void
{
cmin(ans,info[1]);
for(auto to:G[now]) if(to!=father)
{
modify(1,L[to]-1,1),modify(R[to]+1,n,1),modify(L[to],R[to],-1);
dfs2(dfs2,to,now);
modify(1,L[to]-1,-1),modify(R[to]+1,n,-1),modify(L[to],R[to],1);
}
}; dfs2(dfs2,1,0);
write(ans,'\n');
}
}
}
bool Med;
signed main()
{
//file();
fprintf(stderr,"%.3lf MB\n",abs(&Med-&Mbe)/1048576.0);
int Tbe=clock();
LgxTpre::lmy_forever();
int Ted=clock();
cerr<<1e3*(Ted-Tbe)/CLOCKS_PER_SEC<<" ms\n";
return (0-0);
}