Gauss Seidel求解线性方程组的Matlab程序

在matlab file exchange找了一圈,没找到合适的GS代码,于是自己写了一个, forward and backward
这里没有提及GS的理论,have fun!


  • 2021.12.2-测试,该程序计算大规模稀疏矩阵时极其耗时,今日已优化,待程序整理完毕后上传
  • 2021.12.3-updating, have optimized the GS algorithm to solve the large-scale sparsity problems. An example is given in .m file.
  • 2021.12.6-计划,编写Blocked GS程序 \ [已放弃]
  • 2022.6.14-测试,该GS程序应该利用矩阵分解和mldivide,可以实现较好的迭代效率,但更高效的迭代方式还得使用C/C++,该部分代码暂时未上传
  • 2022.6.15- mexGS代码已上传
  • 2022.6.17- 添加可并行的red-black GS,mexRBGS代码已上传
  • 2022.6.18- 预告,Chebyshev semi iteration [懒了,先用matlab版凑合一下]
%% ********************************************************************
% % Matlab implementation of Gauss seidel to solve Ax = b iteratively 
% % >>> Gauss seidel idea is derived here:
% %            A*x = b -> (L + D + U)*x = b
% % where L is the lower triangular elements, U is the upper triangular
% % elements, D is the diagonal elements.
% % >>> then:
% %            (L + D)*x_new = b - U*x_old
% % >>> obviously (Forward):
% %            x_new = (L + D)^{-1} * [b - U*x_old]
% % >>> similarly (backward):
% %            x_new = (D + U)^{-1} * [b - L*x_old]
% % *********************************************2021.11.30*By-LitBro*

function x = Gauss_seidel(A,x,b,tol,maxit,row_start,row_stop,row_step)
% NEED:   N*N:   A         - (matrix, diag dominant) 
%         N*1:   x         - (initial choice, could be the start of GS) 
%         N*1:   b         - (right hand)
%         float: tol       - (tolerence)
%         int:   maxit     - (max iteration number)
%         int:   row_start - (beginning of the sweep)
%         int:   row_stop  - (end of the sweep)
%         int:   row_step  - (stride used during the sweep, may be negative)
% 
%  OUT:   N*1:   x_new (approximate solution, sweep x after maxit or satisfy tol)
%             
% ====  Example: Run the Code or Press F5  ==============================
        A = [10 0 1 -5;1 8 -3 0;3 2 8 1;1 -2 2 7];
        x = [1;1;1;1];     % initial random choice
        b = [-7;11;23;17];
      tol = 1d-3;
    maxit = 1000;          % max iteration number
row_start = 1;
row_stop  = 4;
row_step  = 1;             % forward 
% 
% show: it  = 8
%       x   = [ 0.3156;  2.0625;  1.9386;  2.4189]
%       A*x = [-6.9993; 10.9998; 22.9999; 17.0000] \approx b
% ========================================================================= 

I = diag(A);
A = A - diag(diag(A));   % remove diag A
err = 1; it = 1;         % start 
while (err >= tol) ~= 0 && it <= maxit
    x_old = x;           % store x_old
    for ii = row_start:row_step:row_stop
        B = b(ii) - A(ii,:) * x;  
        x(ii) = B / I(ii);
    end
    err = sum(abs(x - x_old));
    it = it+1;
end
end



最后更新于 2022年6月18日 --- 最初发表于 2021年11月30日
原创作者:LitBro
关于作者:百度、CSDN开禁用复制,**#
本文链接: [https://www.cnblogs.com/LitBro/p/15626226.html]
版权声明:本文采用 BY-NC-SA协议,转载或引用请注明出处!
关于后续:碍于学业不精,如有描述不当,还请见谅并非常感谢指出

posted @ 2021-11-30 21:06  LitBro  阅读(305)  评论(0编辑  收藏  举报