数据结构之查找

 前言:查找是开发中用的非常多的一项,比如mysql中的查找,下面主要简单介绍一下查找。

1:线性表查找

线性表查找主要分为顺序查找和链式查找,顺序表查找都是从一端到另一端进行遍历。比如下面代码

public int indexOf(T x){
        if (x!=null){
            for (int i=0;i<this.len;i++){
                if (this.element[i].equals(x)){
                    return i;
                }
            }
        }
        return -1;
    }

    public T search(T key) {
        return indexOf(key)==-1?null:(T) this.element[indexOf(key)];
    }

第二种是链式查找也非常简单

public T search(T key) {
        if (key==null){
            return null;
        }
        Node<T> p=this.head.next;
        while (p!=null){
            if (p.data.equals(key)){
                return p.data;
            }
            p=p.next;
        }
        return null;
    }

2:基于有序顺序表的二分查找

这个用的比较多,因为查询效率比较高,但是有限制条件,1是顺序存储,2必须有序,所以每次只需要和中间值进行比对,如果大于中间值,说明在key值在后面,如果小于中间值,说明key在前面。

 public static<T> int binarySearch(Comparable<T>[] values,int begin,int end,T key) {
        if (key != null) {
            while (begin <= end) {
                int mid = (begin + end) / 2;
                if (values[mid].compareTo(key) == 0) {
                    return mid;
                }
                if (values[mid].compareTo(key) < 0) {
                    begin = mid + 1;
                }
                if (values[mid].compareTo(key) > 0) {
                    end = mid - 1;
                }
            }
        }
        return -1;
    }
    public static int binarySearch(int[] arrays, int key) {
        if (arrays == null || arrays.length == 0) {
            return -1;
        }
        int start=0,end=arrays.length-1;
        while (start <=end) {
            int mid = (start + end) / 2;
            if (arrays[mid] == key) {
                return mid;
            }
            if (arrays[mid] < key) {
                start = mid + 1;
            }
            if (arrays[mid] > key) {
                end = mid - 1;
            }

        }
        return -1;
    }

3:分块索引查找

我们都知道查字典,首先要查询是字的拼音,然后定位到字页数的一个位置,比如查找张这个字,我们先查询z,然后看哪些页是z,然后在这一块进行查找。ok我们做个简单的例子

现在我们已知一个数组里面存放的是Java的关键字,那么我们给出一个关键字来判断是否在这个数组中。首先我们看下关键字的数组

  private static String[] keyWords={"abstract","assert","boolean","break","byte","case",
           "catch","char","continue","default","do","double","else","extend","false","final",
   "finally","float","for","if","implements","import","instaceof","in","interface",
   "long","native","new","null","package","private","protectd","public","return","short",
   "static","super","switch","synchronized","this","throw","transient","true","try","void","volatile","while"};

然后我们思考一下建立索引,因为英文单词是26个字母组成,那么我们效仿字典,把26个字母存起来,然后记录每个字母的位置。

 private static class IndexItem implements Comparable<IndexItem>{
        String frist;
        int start;
        public IndexItem(String frist,int start){
            this.frist=frist;
            this.start=start;
        }

其中frist是字母,二start是字母的索引,比如abstract是a0,那么assert就是a1了以此类推

  public int compareTo(IndexItem o) {
            return this.frist.compareTo(o.frist);
        }
  private static IndexItem[] index;索引表
        static {
            index = new IndexItem[26];
            int i = 0, j = 0, size = 0;
            for (i = 0; j < keyWords.length && i < index.length; i++) {
                char ch = keyWords[j].charAt(0);
                IndexItem item = new IndexItem(ch + "", j);
                if (item != null) {
                    index[i] = item;
                    size++;
                }
                j++;
                while (j < keyWords.length && keyWords[j].charAt(0) == ch) {
                    j++;
                }
            }
            int oldCount = index.length;利用trimTosize方法对数组进行压缩
            if (size < oldCount) {
                IndexItem[] items = index;
                index = new IndexItem[size];
                for (int m = 0; m < size; m++) {
                    index[m]  = items[m];
                }
            }
        }

我们创建一个静态块,在类被加载的时候运行。最后我们利用2次2分查找第一找到索引,然后通过索引匹配到值

    public static boolean isKeyWord(String str){
            IndexItem indexItem=new IndexItem(str.substring(0,1),-1);
            int pos=BSArry.binarySearch(index,indexItem);
            int begin=index[pos].start;
            int end;
            if (pos==index.length-1){
                end=keyWords.length-1;
            }else {
                 end=index[pos+1].start-1;
            }
            return BSArry.binarySearch(keyWords,begin,end,str)>=0;
        }

4:散列表的查找

散列的查找非常高效,但是我们必须要完成2项工作,一个是散列函数,另一个是解决冲突。下面看一下如何利用单链表简单的实现hash。

public class HashSet<T> {
    private SingleLinkedList<T>[] table;

    public HashSet(int size) {
        this.table = new SingleLinkedList[Math.abs(size)];
        for (int i = 0; i < table.length; i++) {
            table[i] = new SingleLinkedList<T>();//制造单链表
        }
    }

    public HashSet() {
        this(97);
    }

    private int hash(T x) {//利用hashCode解决
        int key = Math.abs(x.hashCode());
        return key % table.length;
    }

    public void insert(T x) {
        this.table[hash(x)].insert(0, x);
    }

    public void remove(T x) {
        this.table[hash(x)].remove(x);
    }

    public T search(T key) {
        return table[hash(key)].search(key);
    }
}

 

posted @ 2017-03-09 22:08  朝向远方  阅读(547)  评论(0编辑  收藏  举报