[LeetCode][JavaScript]Range Sum Query 2D - Immutable

Range Sum Query 2D - Immutable

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

Range Sum Query 2D
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

 

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

https://leetcode.com/problems/range-sum-query-2d-immutable/

 

 

 


 

 

 

矩阵求和,给定数组不会变,求和方法会反复调用多次。

维护一个数组,dp(i,j)的值就是从(0,0)到(i,j)的和。

调用sumRegion(row1, col1, row2, col2)时,结果就是dp(row2,col2) - dp(row2,col1 - 1) - dp(row1 - 1,col2) + dp(row1 - 1,col1 - 1)。

 

  -    -    +  

 

 1 /**
 2  * @constructor
 3  * @param {number[][]} matrix
 4  */
 5 var NumMatrix = function(matrix) {
 6     this.dp = [];
 7     var i, j, top, rowSum;
 8     var rowLen = matrix[0] ? matrix[0].length : 0;
 9     for(i = 0; i < matrix.length; i++){
10         rowSum = 0;
11         for(j = 0; j < rowLen; j++){
12             if(!this.dp[i]){
13                 this.dp[i] = [];
14             }
15             rowSum += matrix[i][j];
16             top = this.dp[i - 1] && this.dp[i - 1][j] ? this.dp[i - 1][j] : 0;
17             this.dp[i][j] = top + rowSum;
18         }
19     }
20 };
21 
22 /**
23  * @param {number} row1
24  * @param {number} col1
25  * @param {number} row2
26  * @param {number} col2
27  * @return {number}
28  */
29 NumMatrix.prototype.sumRegion = function(row1, col1, row2, col2) {
30     var left = this.dp[row2][col1 - 1] ? this.dp[row2][col1 - 1] : 0;
31     var top = this.dp[row1 - 1] ? this.dp[row1 - 1][col2] : 0;
32     var topLeft = this.dp[row1 - 1] && this.dp[row1 - 1][col1 - 1] ? this.dp[row1 - 1][col1 - 1] : 0;
33     return this.dp[row2][col2] - left - top + topLeft;
34 };

 

 

 

 

 

posted @ 2015-11-12 14:35  `Liok  阅读(275)  评论(0编辑  收藏  举报