[数值分析]插值法😥

插值法

预备知识

我们希望通过插值去用易于计算的函数\(p(x)\)来近似一个复杂的函数\(f(x)\),使得

\[f(x) \approx p(x) \]

这里的“近似”是指,\(f(x)\)\(p(x)\)\(x\)的某些点上的值相等,如\(x_0, x_1, \cdots, x_n\),这些点称为插值点。我们希望\(p(x)\)在这些点上的值与\(f(x)\)的值相等,即

\[f(x_i) = p(x_i), \quad i = 0, 1, \cdots, n \]

其中,\(x_i\)称为插值节点,\(p(x_i)=f(x_i)\)称为插值条件。

什么是差商

\(f(x)\)\(x_i\)处的零阶差商为

\[f[x_i] = f(x_i) \]

\(f(x)\)\(x_i\)处的一阶差商为

\[f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \]

\(f(x)\)\(x_i\)处的二阶差商为

\[f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_i, x_{i+1}] - f[x_{i+1}, x_{i+2}]}{x_{i+2} - x_i} \]

\(x_i\) \(f[x_i]\) \(f[x_i, x_{i+1}]\) \(f[x_i, x_{i+1}, x_{i+2}]\) \(f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]\)
\(x_0\) \(f(x_0)\)
\(x_1\) \(f(x_1)\) \(f[x_0, x_1]\)
\(x_2\) \(f(x_2)\) \(f[x_1, x_2]\) \(f[x_0, x_1, x_2]\)
\(x_3\) \(f(x_3)\) \(f[x_2, x_3]\) \(f[x_1, x_2, x_3]\) \(f[x_0, x_1, x_2, x_3]\)

注:差商有个特性是和排列次序无关,例如\(f[x_i, x_{i+1}] = f[x_{i+1}, x_i]\),下面展开一下;

\[\begin{aligned} f[x_i, x_{i+1}] &= \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \\ &= \frac{f(x_i)}{x_i - x_{i+1}} + \frac{f(x_{i+1})}{x_{i+1} - x_i} \\ \end{aligned} \]

我们同样有\(f[x_i, x_{i+1}, x_{i+2}] = f[x_{i+2}, x_{i+1}, x_i]\),下面展开一下;

\[\begin{aligned} f[x_i, x_{i+1}, x_{i+2}] &= \frac{f[x_i, x_{i+1}] - f[x_{i+1}, x_{i+2}]}{x_{i} - x_{i+2}} \\ &= \frac{\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} - \frac{f(x_{i+2}) - f(x_{i+1})}{x_{i+2} - x_{i+1}}}{x_{i} - x_{i+2}} \\ &= \frac{f(x_{i})}{(x_{i} - x_{i+1})(x_{i} - x_{i+2})} + \frac{f(x_{i+1})}{(x_{i+1} - x_{i})(x_{i+1} - x_{i+2})} + \frac{f(x_{i+2})}{(x_{i+2} - x_{i})(x_{i+2} - x_{i+1})} \\ \end{aligned} \]

从这个形式就可以看出来没有差商的排列次序是没有意义的。

不等距节点下的牛顿基本差商公式

由一阶差商的定义,我们可以得到

\[\begin{aligned} f[x_0,x] &= \frac{f(x) - f(x_0)}{x - x_0}\\ f[x_1,x_0,x] &= \frac{f[x_1,x_0] - f[x_0,x]}{x_1 - x}\\ f[x_2,x_1,x_0,x] &= \frac{f[x_2,x_1,x_0] - f[x_1,x_0,x]}{x_2 - x}\\ f[x_3,x_2,x_1,x_0,x] &= \frac{f[x_3,x_2,x_1,x_0] - f[x_2,x_1,x_0,x]}{x_3 - x}\\ \vdots\\ f[x_n,x_{n-1},\cdots,x_0,x] &= \frac{f[x_n,x_{n-1},\cdots,x_0] - f[x_{n-1},\cdots,x_0,x]}{x_n - x}\\ \end{aligned} \]

这个式子可以写成(将上面依次展开,记住我们的目的我们希望表达出f(x))

\[\begin{aligned} f(x) &= f(x_0) + f[x_0,x](x - x_0)\\ (代入f[x_0,x] &= f[x_1,x_0] + f[x_1,x_0,x](x - x_1))\\ &= f(x_0) + f[x_1,x_0](x - x_0) + f[x_1,x_0,x](x - x_1)(x - x_0)\\ (代入f[x_1,x_0,x] &= f[x_2,x_1,x_0] + f[x_2,x_1,x_0,x](x - x_2))\\ &= f(x_0) + f[x_1,x_0](x - x_0) + f[x_2,x_1,x_0](x - x_1)(x - x_0) + f[x_2,x_1,x_0,x](x - x_2)(x - x_1)(x - x_0)\\ (代入f[x_2,x_1,x_0,x] &= f[x_3,x_2,x_1,x_0] + f[x_3,x_2,x_1,x_0,x](x - x_3))\\ \vdots\\ &= f(x_0) + f[x_1,x_0](x - x_0) + f[x_2,x_1,x_0](x - x_1)(x - x_0) + \cdots + f[x_n,x_{n-1},\cdots,x_0,x](x - x_n)(x - x_{n-1})\cdots(x - x_0)\\ &= \sum_{i=0}^n f[x_i,x_{i-1},\cdots,x_0]\prod_{j=0}^{i-1}(x - x_j) + f[x_n,x_{n-1},\cdots,x_0,x]\prod_{j=0}^n(x - x_j)\\ \end{aligned} \]

在上式中,我们令\(P_n(x) = f[x_n,x_{n-1},\cdots,x_0]\prod_{j=0}^{i-1}(x - x_j)\),令\(R_n(x) = f[x_n,x_{n-1},\cdots,x_0,x]\prod_{j=0}^n(x - x_j)\),那么我们有

\[\begin{aligned} f(x) &= P_n(x) + R_n(x)\\ \end{aligned} \]

其中\(P_n(x)\)称为牛顿基本差商公式,\(R_n(x)\)称为牛顿基本差商公式的余式。

由上面公式我们容易看出,当\(x\)\(x_0,x_1,\cdots,x_n\)时,\(R_n(x)\)即为0,\(P_n(x)\)即为\(f(x)\)

简单例子

已知\(x=1,4,9\)的平方根值,试求\(\sqrt{7}\)的值。

解:由上面的公式我们有差商表如下(差商可以在每一列居中)

\(x_i\) \(f(x_i)\) \(f[x_i,x_{i+1}]\) \(f[x_i,x_{i+1},x_{i+2}]\)
1 1
4 2 0.33333
9 3 0.2 -0.01667

则差商公式为

\[\begin{aligned} P_2(x) &= f[1] + f[1,4](x - 1) + f[1,4,9](x - 1)(x - 4) \\ &= 1 + 0.33333(x - 1) - 0.01667(x - 1)(x - 4) \\ \end{aligned} \]

代入\(x=7\),则有\(P_2(7) = 2.69992\) ,即\(\sqrt{7} = 2.69992\)

f = lambda x : 1 + 0.33333*(x - 1) - 0.01667*(x - 1)*(x - 4)
f(7)
2.6999199999999997

余式估计

由拉格朗日中值定理容易证明,在\(x_0,x_1,\cdots,x_n\)上的存在\(\xi\)使得\(f[x_0,x_1,\cdots,x_n] = \frac{f^{(n)}(\xi)}{n!}\),则有\(f[x_n,x_{n-1},\cdots,x_0,x] = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}\)

\[R_n(x) = f[x_n,x_{n-1},\cdots,x_0,x]\prod_{j=0}^n(x - x_j) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}\prod_{j=0}^n(x - x_j) \]

对于上面的例子,我们有

\[\begin{aligned} f(x) = \sqrt{x} \\ f^{(1)}(x) = \frac{1}{2\sqrt{x}} \\ f^{(2)}(x) = -\frac{1}{4x^{3/2}} \\ f^{(3)}(x) = \frac{3}{8x^{5/2}} \\ \end{aligned} \]

可知\(f^{(3)}(x)\)单调递减,则有\(f^{(3)}(x) \leq f^{(3)}(1) = \frac{3}{8}\),则有

\[\begin{aligned} |R_2(x)| &\leq \frac{3}{8}|\prod_{j=0}^2(x - x_j)| \\ &= \frac{3}{8}|(x - 1)(x - 4)(x - 9)| \\ \end{aligned} \]

则有\(|R_2(7)| \leq 13.5\),这显然不符合我们余式估计的要求,我们需要更多的值或者方法来估计余式。

3/8 * (7-1)*(7-4)*(7-9)
-13.5

事后估计误差法

在上面中我们选取的牛顿差商公式为\(P_n(x)\),插值节点为\(x_0,x_1,\cdots,x_n\)

\[\begin{aligned} P_n(x) &= \sum_{i=0}^n f[x_i,x_{i+1},\cdots,x_n]\prod_{j=0}^{i-1}(x - x_j) \\ R_n(x) &= f[x_n,x_{n-1},\cdots,x_0,x]\prod_{j=0}^n(x - x_j) \\ \end{aligned} \]

若我们选取的插值节点为\(x_1,\cdots,x_{n + 1}\),则有

\[\begin{aligned} P_n^{(1)}(x) &= \sum_{i=1}^{n + 1} f[x_i,x_{i+1},\cdots,x_{n + 1}]\prod_{j=1}^{i-1}(x - x_j) \\ R_n^{(1)}(x) &= f[x_{n+1},x_n,\cdots,x_1,x]\prod_{j=1}^{n+1}(x - x_j) \\ \end{aligned} \]

则两个余式的比值为

\[\begin{aligned} \frac{R_n(x)}{R_n^{(1)}(x)} &= \frac{f[x_n,x_{n-1},\cdots,x_0,x]\prod_{j=0}^n(x - x_j)}{f[x_{n+1},x_n,\cdots,x_1,x]\prod_{j=1}^{n+1}(x - x_j)} &= \frac{f[x_n,x_{n-1},\cdots,x_0,x]}{f[x_{n+1},x_n,\cdots,x_1,x]} * \frac{\prod_{j=0}^n(x - x_j)}{\prod_{j=1}^{n+1}(x - x_j)} \\ &= \frac{f[x_n,x_{n-1},\cdots,x_0,x]}{f[x_{n+1},x_n,\cdots,x_1,x]} * \frac{x - x_0}{x - x_{n + 1}} \\ \end{aligned} \]

因为\(f[x_n,x_{n-1},\cdots,x_0,x]\)\(f[x_{n+1},x_n,\cdots,x_1,x]\)都是关于\(x\)的高阶差商,我们这里认为它们的值是几乎相等的,再者我们有\(R_n^{(1)}(x) = f(x) - P_n^{(1)}(x) = P_n(x) + R_n(x)- P_n^{(1)}(x)\),则有

\[\begin{aligned} \frac{R_n(x)}{R_n^{(1)}(x)} = \frac{R_n(x)}{R_n(x) + P_n(x) - P_n^{(1)}(x)} &= \frac{x - x_0}{x - x_{n + 1}}\\ \Rightarrow (x - x_0)R_n(x) + (x - x_0)(P_n(x) - P_n^{(1)}(x)) &= (x - x_{n + 1})R_n(x)\\ \Rightarrow (x_0 - x_{n + 1})R_n(x) &= (x - x_0)(P_n(x) - P_n^{(1)}(x))\\ \Rightarrow R_n(x) &= \frac{x - x_0}{x_0 - x_{n + 1}}(P_n(x) - P_n^{(1)}(x)) \\ \end{aligned} \]

简单例子2

已知\(x_0 = 4, x_1 = 9, x_2 = 6.25, x_4 = 4.84\),求\(\sqrt{7}\)的值。

解:由于\(x_0 = 4, x_1 = 9, x_2 = 6.25, x_4 = 4.84\),所以我们可以用牛顿插值公式求出\(P_2(7)\)

差商表如下:

\(x\) \(f(x)\) \(f[x_i,x_{i+1}]\) \(f[x_i,x_{i+1},x_{i+2}]\)
4 2
9 3 0.2
6.25 2.5 0.18182 -0.00808
4.84 2.2 0.21277 -0.00744

\[\begin{aligned} P_2(7) &= 2 + 0.2(7 - 4) - 0.00808(7 - 4)(7 - 9) = 2.64848 \\ \end{aligned} \]

余式估计: 由\(f(x) = \sqrt{x}\),我们有\(f^{(3)}(x) = \frac{3}{8}x^{-\frac{5}{2}}\),在区间\([4,9]\)上,\(f^{(3)}(x)\)的最大值为\(\frac{3}{8}4^{-\frac{5}{2}} = 0.01171875\),所以有

\[\begin{aligned} R_2(7) &= f[4,9,6.25](7 - 4)(7 - 9)(7 - 6.25) \\ &= \frac{f^{(3)}(\xi)}{3!}(7 - 4)(7 - 9)(7 - 6.25) \\ &\leq \frac{0.01171875}{6}(7 - 4)(7 - 9)(7 - 6.25) \\ &= -0.0087890625 \\ \end{aligned} \]

事后估计法:

\[\begin{aligned} P_2^{(1)}(7) &= 3 + 0.18182(7 - 9) + 0.00744(7 - 9)(7 - 6.25) = 2.64752 \\ R_2(7) &= \frac{7 - 4}{4 - 4.84} * (P_2(7) - P_2^{(1)}(7)) = -0.00343 \\ \end{aligned} \]

由事后估计法得到的余式近似\(0.5*10^{-2}\)\(P_2(7)\)的值可舍入为\(2.65\),所以\(\sqrt{7} \approx 2.65\)

差分

在不等距节点的基础上我们特殊化,假如\(x_0, x_1, \cdots, x_n\)是等距的,即\(x_i - x_{i - 1} = h\),则称为等距节点,其每一个节点对应的值为\(y_0, y_1, \cdots, y_n\),我们称为差分,记为\(y_i = f(x_i)\),则称

\[\begin{aligned} \Delta y_{i-1} = y_i - y_{i - 1} &= f(x_i) - f(x_{i - 1}) \text{\quad(1)} \\ \text{(1)称为一阶差分,例如}\Delta y_0 &= y_1 - y_0 \\ \Delta^2 y_{i-2} = \Delta y_{i-1} - \Delta y_{i-2} &= f(x_i) - 2f(x_{i - 1}) + f(x_{i - 2}) \text{\quad(2)} \\ \text{(2)称为二阶差分,例如}\Delta^2 y_0 &= \Delta y_1 - \Delta y_0 \\ \Delta^3 y_{i-3} = \Delta^2 y_{i-2} - \Delta^2 y_{i-3} &= f(x_i) - 3f(x_{i - 1}) + 3f(x_{i - 2}) - f(x_{i - 3}) \text{\quad(3)} \\ \text{(3)称为三阶差分,例如}\Delta^3 y_0 &= \Delta^2 y_1 - \Delta^2 y_0 \\ \end{aligned} \]

注:其系数我们发现其实和二项式展开式很相像的,我们不妨写一下二项式展开式来对比

\[\begin{bmatrix} (a-b)^1 = a - b &\rightarrow &\Delta y_{i-1} = f(x_i) - f(x_{i - 1}) \\ (a-b)^2 = a^2 - 2ab + b^2 &\rightarrow &\Delta^2 y_{i-2} = f(x_i) - 2f(x_{i - 1}) + f(x_{i - 2}) \\ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 &\rightarrow &\Delta^3 y_{i-3} = f(x_i) - 3f(x_{i - 1}) + 3f(x_{i - 2}) - f(x_{i - 3}) \\ \end{bmatrix} \]

则我们可以得到\(x_i = x_0 + ih\)\(y_i = f(x_0 + ih)\),则有(用差分表示差商)

\[\begin{aligned} f[x_0,x_1] &= \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{y_1 - y_0}{h} = \frac{\Delta y_0}{h} \\ f[x_0,x_1,x_2] &= \frac{f[x_1,x_2] - f[x_0,x_1]}{x_2 - x_0} = \frac{\Delta y_1 - \Delta y_0}{2h} = \frac{\Delta^2 y_0}{2h^2} \\ f[x_0,x_1,x_2,x_3] &= \frac{f[x_1,x_2,x_3] - f[x_0,x_1,x_2]}{x_3 - x_0} = \frac{\Delta^2 y_1 - \Delta^2 y_0}{3h} = \frac{\Delta^3 y_0}{6h^3} \\ \vdots \\ f[x_0,x_1,\cdots,x_n] &= \frac{f[x_1,x_2,\cdots,x_n] - f[x_0,x_1,\cdots,x_{n-1}]}{x_n - x_0} = \frac{\Delta^{n} y_0}{n!h^n} \\ \end{aligned} \]

牛顿基本差商公式为:

\[\begin{aligned} f(x) &= P_n(x) + R_n(x) \\ P_n(x) &= \sum_{i=0}^n f[x_0,x_1,\cdots,x_i] \prod_{j=0}^{i-1} (x - x_j) \\ R_n(x) &= f[x_0,x_1,\cdots,x_n,x] \prod_{j=0}^{n} (x - x_j) \\ \end{aligned} \]

用差分代替差商,我们得到牛顿前向插值公式:

\[\begin{aligned} P_n(x) &= y_0 + \frac{\Delta y_0}{h} (x - x_0) + \frac{\Delta^2 y_0}{2h^2} (x - x_0)(x - x_1) + \frac{\Delta^3 y_0}{6h^3} (x - x_0)(x - x_1)(x - x_2) + \cdots + \frac{\Delta^{n} y_0}{n!h^n} (x - x_0)(x - x_1)\cdots(x - x_{n-1}) \\ &= y_0 + \sum_{i=1}^n \frac{\Delta^i y_0}{i!h^i} \prod_{j=0}^{i-1} (x - x_j) \\ \end{aligned} \]

\(t = \frac{x - x_0}{h}\),则有

\[\begin{aligned} P_n(x) &= y_0 + \Delta y_0 t + \frac{\Delta^2 y_0}{2} t(t - 1) + \frac{\Delta^3 y_0}{6} t(t - 1)(t - 2) + \cdots + \frac{\Delta^{n} y_0}{n!} t(t - 1)\cdots(t - n + 1) \\ &= y_0 + \sum_{i=1}^n \frac{\Delta^i y_0}{i!} t(t - 1)\cdots(t - i + 1) \\ &= y_0 + c_t^1 \Delta y_0 + c_t^2 \Delta^2 y_0 + c_t^3 \Delta^3 y_0 + \cdots + c_t^n \Delta^n y_0 \\ \end{aligned} \]

其中\(c_t^i = \frac{t(t - 1)\cdots(t - i + 1)}{i!}\),称为牛顿基本差商的系数。

牛顿前向插值公式的余项为

\[\begin{aligned} R_n(x) &= f[x_0,x_1,\cdots,x_n,x] \prod_{j=0}^{n} (x - x_j) \\ &= f[x_0,x_1,\cdots,x_n,x] \prod_{j=0}^{n} (x - x_0 - jh) \\ &= \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1} \prod_{j=0}^{n} (t - j) \\ \end{aligned} \]

同理由差商表最后一行可得牛顿后向插值公式:

\[\begin{aligned} P_n(x) &= y_n + \frac{\Delta y_{n-1}}{h} (x - x_n) + \frac{\Delta^2 y_{n-2}}{2h^2} (x - x_n)(x - x_{n-1}) + \frac{\Delta^3 y_{n-3}}{6h^3} (x - x_n)(x - x_{n-1})(x - x_{n-2}) + \cdots + \frac{\Delta^{n} y_0}{n!h^n} (x - x_n)(x - x_{n-1})\cdots(x - x_{1}) \\ &= y_n + \sum_{i=1}^n \frac{\Delta^i y_{n-i}}{i!h^i} \prod_{j=0}^{i-1} (x - x_{n-j}) \\ \end{aligned} \]

\(t = \frac{x - x_n}{h}\),则有

\[\begin{aligned} P_n(x) &= y_n + \Delta y_{n-1} t + \frac{\Delta^2 y_{n-2}}{2} t(t + 1) + \frac{\Delta^3 y_{n-3}}{6} t(t + 1)(t + 2) + \cdots + \frac{\Delta^{n} y_0}{n!} t(t + 1)\cdots(t + n - 1) \\ &= y_n + \sum_{i=1}^n \frac{\Delta^i y_{n-i}}{i!} t(t + 1)\cdots(t + i - 1) \\ &= y_n + c_t^1 \Delta y_{n-1} + c_{t+1}^2 \Delta^2 y_{n-2} + c_{t+2}^3 \Delta^3 y_{n-3} + \cdots + c_{t+n-1}^n \Delta^n y_0 \\ \end{aligned} \]

其中\(c_t^i\)与上面的相同(课件中明显写错了)。

牛顿后向插值公式的余项为

\[\begin{aligned} R_n(x) &= f[x_0,x_1,\cdots,x_n,x] \prod_{j=0}^{n} (x - x_j) \quad\text{注意到这里是从后往前减的}x_j = x_n - jh \\ &= f[x_0,x_1,\cdots,x_n,x] \prod_{j=0}^{n} (x - x_n + jh) \\ &= \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1} \prod_{j=0}^{n} (t + j) \\ \end{aligned} \]

斯梯林插值公式

斯梯林插值公式是牛顿插值公式的一种推广,它的基本思想是将插值点分成两组,分别用牛顿插值公式求出两组的插值多项式,然后将两个多项式相加得到斯梯林插值公式。

这里认为只要记住下面两幅图即可,推导过程略;



不等距节点下的拉格朗日插值公式

推导

在上面知识的基础上,我们设\(x\)\(x_0, x_1, \cdots, x_n\)这个插值区间中的任意一个点,则有

由上面证明顺序性的类似结论,我们可以得到

\[\begin{aligned} f[x_0,x] & = \frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0)}{x_0 - x} + \frac{f(x)}{x - x_0} \\ f[x_0,x_1,x] & = \frac{f(x_0)}{(x_0 - x_1)(x_0 - x)} + \frac{f(x_1)}{(x_1 - x_0)(x_1 - x)} + \frac{f(x)}{(x - x_0)(x - x_1)} \\ f[x_0,x_1,x_2,x] & = \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x)} + \frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x)} + \frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x)} + \frac{f(x)}{(x - x_0)(x - x_1)(x - x_2)} \\ f[x_0,x_1,\cdots,x_n,x] & = \sum_{i=0}^n \frac{f(x_i)}{(x_i - x)\prod_{j=0, j \neq i}^n (x_i - x_j)} + \frac{f(x)}{\prod_{j=0}^n (x - x_j)} \\ \end{aligned} \]

我们将上式同乘以\((x - x_0)(x - x_1)\cdots(x - x_n)\),(即\(\prod_{j=0}^n (x - x_j)\)),则有

\[\begin{aligned} f[x_0,x_1,\cdots,x_n,x]\prod_{j=0}^n (x - x_j) & = \sum_{i=0}^n \frac{f(x_i)*\prod_{j=0}^n (x - x_j)}{(x_i - x)\prod_{j=0, j \neq i}^n (x_i - x_j)} + f(x) \end{aligned} \]

移项一下我们有

\[\begin{aligned} f(x) &= -\sum_{i=0}^n \frac{f(x_i)*\prod_{j=0}^n (x - x_j)}{(x_i - x)\prod_{j=0, j \neq i}^n (x_i - x_j)} + f[x_0,x_1,\cdots,x_n,x]\prod_{j=0}^n (x - x_j) \\ &= \sum_{i=0}^n \frac{f(x_i)*\prod_{j=0, j \neq i}^n (x - x_j)}{\prod_{j=0, j \neq i}^n (x_i - x_j)} + f[x_0,x_1,\cdots,x_n,x]\prod_{j=0}^n (x - x_j) \\ \end{aligned} \]

在上式中,我们令\(L_n(x) = \sum_{i=0}^n \frac{\prod_{j=0, j \neq i}^n (x - x_j)}{\prod_{j=0, j \neq i}^n (x_i - x_j)}f(x_i)\), \(R_n(x) = f[x_0,x_1,\cdots,x_n,x]\prod_{j=0}^n (x - x_j)\),则有

\[\begin{aligned} f(x) &= L_n(x) + R_n(x) \\ \end{aligned} \]

其中的\(L_n(x)\)称为拉格朗日插值公式,\(R_n(x)\)就是其余项。

其它还有诸如下面的一些插值方法,课本上的写的也很详细,这里就不再赘述了。(主要是好多式子!!!)

  • 等距节点下的拉格朗日插值公式
  • 反向插值
  • 埃尔米特插值
  • 多元函数的插值
posted @ 2022-10-28 13:44  Link_kingdom  阅读(462)  评论(0编辑  收藏  举报