[数值分析]埃特肯加速法求方程解Aitken!
埃特肯加速法求方程解Aitken!
import numpy as np
import matplotlib.pyplot as plt
def f(x):
return x**3 - x**2 - 1
构造迭代函数
\[\begin{aligned}
x^{3} - x^{2} - 1 &= 0 \\
x = \sqrt{x^{3} - 1} \\
\end{aligned}
\]
令\(\varphi(x) = \sqrt{x^{3} - 1}\)为迭代公式
def phi(x):
return (x**3 - 1)**(1/2)
x0 = 1.5 # 初始值
while True:
x1 = phi(x0)
if abs(x1 - x0) < 1e-12:
break
x2 = phi(x1)
theta = (x2 - x1)/(x1 - x0)
x0 = (phi(x0) - theta * x0)/(1 - theta)
print(x0)
1.465365431478883
1.4655712202898679
1.4655712318767682
选取其它迭代函数
\[\begin{aligned}
x^{3} - x^{2} - 1 &= 0 \\
x = {(x^{2} + 1)} ^ {\frac{1}{3}} \\
\end{aligned}
\]
令\(\psi(x) = {(x^{2} + 1)} ^ {\frac{1}{3}}\)为迭代公式
# define other iteration methods
def psi(x):
return (x**2 + 1)**(1/3)
x0 = 1.5 # 初始值
while True:
x1 = psi(x0)
if abs(x1 - x0) < 1e-12:
break
x2 = psi(x1)
theta = (x2 - x1)/(x1 - x0)
x0 = (psi(x0) - theta * x0)/(1 - theta)
print(x0)
1.4655584829667796
1.4655712318748688
1.4655712318767682
我们可以看到,\(\varphi(x)\)和 \(\psi(x)\) 的选取对迭代次数并没有明显的改善,个人认为应该是初值选取的太好了,导致迭代次数很少。下面我们来看一下不同初值的迭代次数。
选取初值
重新构造埃特肯 aitken函数
# aitken method
def aitken(x0, func = lambda x0 : x0 , eps = 1e-4 ,isprint=True):
x0 = 1.5 # 初始值
while True:
x1 = func(x0)
if abs(x1 - x0) < eps:
break
x2 = func(x1)
theta = (x2 - x1)/(x1 - x0)
x0 = (func(x0) - theta * x0)/(1 - theta)
print(x0)
aitken(1.5, phi, 1e-12)
1.465365431478883
1.4655712202898679
1.4655712318767682
观察不同初值的迭代次数
aitken(1, psi, 1e-12)
1.4655584829667796
1.4655712318748688
1.4655712318767682
aitken(1, phi, 1e-12)
1.465365431478883
1.4655712202898679
1.4655712318767682
更多迭代函数(free time~~~)
\(x^{3} - x^{2} - 1 = 0\)经过简单的变换可以得到下面的迭代函数
\[\begin{aligned}
x &= x^{2} - \frac{1}{x} \\
x &= \frac{1}{(x - 1)^{\frac{1}{2}}} \\
x &= 1 + \frac{1}{x^{2}} \\
\end{aligned}
\]
def f1(x):
return x**2 - 1/x
def f2(x):
return 1/((x-1)**0.5)
def f3(x):
return 1 + 1/x**2
def f1(x):
return x**2 - 1/x
def f2(x):
return 1/((x-1)**0.5)
def f3(x):
return 1 + 1/x**2
aitken(1, f1, 1e-12)
1.466725043782837
1.4655725197594736
1.465571231878372
1.465571231876768
aitken(1, f2, 1e-12)
1.4673422863283745
1.4655760852065471
1.4655712319132883
1.465571231876768
aitken(1, f3, 1e-12)
1.465858585858586
1.4655712527301703
1.4655712318767682
总结
虽然这只是数值分析的一道题但总体来说,觉得这门课如果设置成一门实践课可能也有好处,不过现在这样自己探索真的好有意思,也让我对这门课有了更深的理解。