matlab中的wden函数(Automatic 1-D Denoising Using Wavelets)

matlab中的wden函数(Automatic 1-D Denoising Using Wavelets)

为了处理数学建模中的数据进行必要的学习:小波降噪

(本文参考的是matlab官方文档,仅供学习使用)

wden函数

XD = wden(X,TPTR,SORH,SCAL,N,wname)
` returns a denoised version `XD` of the signal `X`. The function uses an `N`-level wavelet decomposition of `X` using the specified orthogonal or biorthogonal wavelet `wname` to obtain the wavelet coefficients. The thresholding selection rule `TPTR` is applied to the wavelet decomposition. `SORH` and `SCAL` define how the rule is applied.
[XD,CXD,LXD,THR] = wden(___) 
returns the denoising thresholds by level for DWT denoising

对上面重要的参数进行解释

TPTR — Threshold selection rule character array

Threshold selection rule to apply to the wavelet decomposition structure of X:

  • 'rigsure' — Use the principle of Stein's Unbiased Risk.
  • 'heursure' — Use a heuristic variant of Stein's Unbiased Risk.
  • 'sqtwolog — Use the universal threshold G2ln(length(x)).
  • 'minimaxi' — Use minimax thresholding. (See thselect for more information.)

SORH — Type of thresholding 's' | 'h'

Type of thresholding to perform:

  • 's' — Soft thresholding
  • 'h' — Hard thresholding

SCAL — Multiplicative threshold rescaling 'one' | 'sln' | 'mln'

Multiplicative threshold rescaling:

  • 'one' — No rescaling (网上有人说不随噪声水平变化)
  • 'sln' — Rescaling using a single estimation of level noise based on first-level coefficients
  • 'mln' — Rescaling using a level-dependent estimation of level noise

噪声处理样例

噪声生成

首先我们先随便制造个噪声:

% Create a signal consisting of a 2 Hz sine wave with transients at 0.3 and 0.72 seconds. Add randomly generated noise to the signal and plot the result.
N = 1000; 
t = linspace(0,1,N);
x = 4*sin(4*pi*t);
x = x - sign(t-0.3) - sign(0.72-t);
sig = x + 0.5*randn(size(t));
plot(t,sig)
title('Signal')
grid on

细节说明:

这里可能很多是数字信号处理的内容,不过提前了解也无妨;下面对上面噪声生成的细节进行补充说明:

sign函数(sgn函数、符号函数):
plot(t,sign(t-0.5))
axis([0,1,-2,2])

image

这个函数的值域是从-1到1,为了方便显示,向右将这个信号平移了0.5个单位。假设我们对另一个信号x(t)加入这个信号sign(t-0.5),容易理解,作用后的函数x'(t)=x(t)+sign(t-0.5)在t=0.5处断开了,之前的函数图像向下平移一个单位,之后的函数图像向上平移一个单位

细节:这里不要和阶跃函数混淆,阶跃函数的范围是0到1

x = 4*sin(4*pi*t);
x = x - sign(t-0.3) - sign(0.72-t);

这里上面已经说了这里生成一个2Hz的噪声,我们要注意的是下面这行代码,实际上它给x(t)增加是这样的:

image

噪声
rng('default')
sig = x + 0.5*randn(size(t));

这里是用默认种子去生成伪随机数,噪声我们是每一个t值都对应了一个伪随机数,加了噪声之后我们得到了我们最后的结果:
image

降噪

硬阈值

% Using the sym8 wavelet, perform a level 5 wavelet decomposition of the signal and denoise it by applying three different threshold selection rules to the wavelet coefficients: SURE, minimax, and Donoho and Johnstone's universal threshold with level-dependent estimation of the noise. In each case, apply hard thresholding.
lev = 5;
wname = 'sym8';
[dnsig1,c1,l1,threshold_SURE] = wden(sig,'rigrsure','h','mln',lev,wname);
[dnsig2,c2,l2,threshold_Minimax] = wden(sig,'minimaxi','h','mln',lev,wname);
[dnsig3,c3,l3,threshold_DJ] = wden(sig,'sqtwolog','h','mln',lev,wname);
[dnsig4,c4,l4,threshold_heursure] = wden(sig,'heursure','h','mln',lev,wname);

这里原理先不做进一步分析,目前只需要知道这样用就够了,以后有时间再回来写分析

subplot(4,1,1)
plot(t,dnsig1)
title('Denoised Signal - SURE')
grid on
subplot(4,1,2)
plot(t,dnsig2)
title('Denoised Signal - Minimax')
grid on
subplot(4,1,3)
plot(t,dnsig3)
title('Denoised Signal - Donoho-Johnstone')
grid on
subplot(4,1,4)
plot(t,dnsig4)
title('Denoised Signal - Heursure')
grid on

image

最后我们返回四个阈值看一下

threshold_SURE %stein无偏估计
threshold_Minimax %极大极小值阈值
threshold_DJ %固定式阈值
threshold_heursure %启发式阈值

image

软阈值

噪声生成部分还是上面那种生成方式

% Using the db2 wavelet, perform a level 3 wavelet decomposition of the signal and denoise it using Donoho and Johnstone's universal threshold with level-dependent estimation of the noise. Obtain denoised versions using DWT and MODWT, both with soft thresholding.
wname = 'db2';
lev = 3;
[xdDWT,c1,l1,threshold_DWT] = wden(sig,'sqtwolog','s','mln',lev,wname);
[xdMODWT,c2,threshold_MODWT] = wden(sig,'modwtsqtwolog','s','mln',lev,wname);

画图

subplot(2,1,1)
plot(t,xdDWT)
grid on
title('DWT Denoising')
subplot(2,1,2)
plot(t,xdMODWT)
grid on
title('MODWT Denoising')

image

阈值

image

块状信号噪声处理

噪声生成

%Compare DWT and MODWT Denoising of a Blocky Signal
%This example denoises a blocky signal using the Haar wavelet with DWT and MODWT denoising. It compares the results with plots and metrics for the original and denoised versions.
%First, to ensure reproducibility of results, set a seed that will be used to generate random noise.
rng('default')

%Generate a signal and a noisy version with the square root of the signal-to-noise ratio equal to 3. Plot and compare each.
[osig,nsig] = wnoise('blocks',10,3);
plot(nsig,'r')
hold on
plot(osig,'b')
legend('Noisy Signal','Original Signal')

image

噪声处理(软阈值)

%Using the Haar wavelet, perform a level 6 wavelet decomposition of the noisy signal and denoise it using Donoho and Johnstone's universal threshold with level-dependent estimation of the noise. Obtain denoised versions using DWT and MODWT, both with soft thresholding.
wname = 'haar';
lev = 6 ;
[xdDWT,c1,l1] = wden(nsig,'sqtwolog','s','mln',lev,wname);
[xdMODWT,c2] = wden(nsig,'modwtsqtwolog','s','mln',lev,wname);

画图

figure
plot(osig,'b')
hold on
plot(xdDWT,'r--')
plot(xdMODWT,'k-.')
legend('Original','DWT','MODWT')
hold off

image

硬软阈值的区别

定义:
  • 硬阈值

\[\begin{align} \eta_H(x,th_H) & = x\cdot \varepsilon (|x|-th_H)\\ & = \left \{ \begin{matrix} x,\quad |x|>th_H\\ 0,\quad|x|<th_H \end{matrix} \right.\\ (where\;\varepsilon(t)\;is\;&Step\;Function(阶跃函数) ) \end{align} \]

  • 软阈值

\[\begin{align} \eta_S(x,th_S) & = sgn(x)\cdot (|x|-th_s)\\ & = \left \{ \begin{matrix} x+th_S,\quad x<-th_S\\ 0,\quad|x|<th_S\\ x-th_S,\quad x>th_S \end{matrix} \right.\\ &(sgn(t)是符号函数) \end{align} \]

简单画一下图是这样的

image

如果觉得这个画不好的话,我们也可以用matlab来画

y=linspace(-1,1,100);
>> sigH=wthresh(y,'h',0.4);
>> sigS=wthresh(y,'s',0.4);
>> subplot(1,3,1)
>> plot(y,'b')
>> title('Origin Signal')
>> subplot(1,3,2)
>> plot(sigH,'r')
>> title('Hardthresh Signal')
>> subplot(1,3,3)
>> plot(sigS,'g')
>> title('Softthresh Signal')

image

更进一步的区别可以参考一下大佬的话:

小波分析中软硬阈值法的区别在哪里

posted @ 2022-05-03 10:01  Link_kingdom  阅读(4451)  评论(0编辑  收藏  举报