PyTorch 深度学习实践 第11讲:卷积 神经网络(高级篇)
第11讲:卷积 神经网络(高级篇)
视频教程
1.GoogleNet的Inception
1.inception Module包含(Convolution, Pooling, Softmax, Other)
代码说明:
- 先使用类对Inception Moudel进行封装
- 使用类封装模型计算过程:(卷积层,inception块,卷积层,inception块,全连接层)
- 训练集,测试集(forward, backward, update)
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
#1.prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
#2.design model using class
class InceptionA(nn.Module):
def __init__(self, in_channels):
#定义通道的块
super(InceptionA, self).__init__()
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
def forward(self, x):
#计算过程
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x, kernel_size = 3, stride = 1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
#将这些块放在一个列表中
return torch.cat(outputs, dim = 1)
# b,c,w,h c对应的是dim=1
#然后沿着dim = 1(channel)纬度拼接
#3.design Net using class
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应
self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应
self.mp = nn.MaxPool2d(2)
self.fc = nn.Linear(1408, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
#首先是1个卷积层(conv,maxpooling,relu):输入通道10
x = self.incep1(x)
#然后inceptionA模块(输出的channels是24+16+24+24=88)
x = F.relu(self.mp(self.conv2(x)))
#接着又是一个卷积层(conv,mp,relu)#输出通道20
x = self.incep2(x)#输出通道20
x = x.view(in_size, -1)
#转成向量,连接一个全连接层(fc)。
x = self.fc(x)
return x
model = Net()
#4.construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
#5.training cycle forward, backward, update
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
[1, 300] loss: 1.008
[1, 600] loss: 0.206
[1, 900] loss: 0.150
accuracy on test set: 96 %
[2, 300] loss: 0.110
[2, 600] loss: 0.109
[2, 900] loss: 0.099
accuracy on test set: 97 %
[3, 300] loss: 0.078
[3, 600] loss: 0.082
[3, 900] loss: 0.076
accuracy on test set: 97 %
[4, 300] loss: 0.065
[4, 600] loss: 0.066
[4, 900] loss: 0.066
accuracy on test set: 98 %
[5, 300] loss: 0.057
[5, 600] loss: 0.057
[5, 900] loss: 0.058
accuracy on test set: 98 %
[6, 300] loss: 0.048
[6, 600] loss: 0.052
[6, 900] loss: 0.054
accuracy on test set: 98 %
[7, 300] loss: 0.045
[7, 600] loss: 0.046
[7, 900] loss: 0.049
accuracy on test set: 98 %
[8, 300] loss: 0.040
[8, 600] loss: 0.045
[8, 900] loss: 0.043
accuracy on test set: 98 %
[9, 300] loss: 0.039
[9, 600] loss: 0.040
[9, 900] loss: 0.040
accuracy on test set: 98 %
[10, 300] loss: 0.035
[10, 600] loss: 0.039
[10, 900] loss: 0.036
accuracy on test set: 98 %
参考
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本