PyTorch 深度学习实践 第11讲:卷积 神经网络(高级篇)

第11讲:卷积 神经网络(高级篇)

视频教程
1.GoogleNet的Inception
image
image
1.inception Module包含(Convolution, Pooling, Softmax, Other)

代码说明:
  1. 先使用类对Inception Moudel进行封装
  2. 使用类封装模型计算过程:(卷积层,inception块,卷积层,inception块,全连接层)
  3. 训练集,测试集(forward, backward, update)
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

#1.prepare dataset 

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
 
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)

#2.design model using class
class InceptionA(nn.Module):
    def __init__(self, in_channels):
    #定义通道的块
        super(InceptionA, self).__init__()
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
 
        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
 
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
 
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
    
    def forward(self, x):
    #计算过程
        branch1x1 = self.branch1x1(x)
        
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x, kernel_size = 3, stride = 1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        #将这些块放在一个列表中
        return torch.cat(outputs, dim = 1)
        # b,c,w,h  c对应的是dim=1
        #然后沿着dim = 1(channel)纬度拼接

#3.design Net using class
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
        
        self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应
        self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应
 
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10) 
        
    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        #首先是1个卷积层(conv,maxpooling,relu):输入通道10
        x = self.incep1(x)
        #然后inceptionA模块(输出的channels是24+16+24+24=88)
        x = F.relu(self.mp(self.conv2(x)))
        #接着又是一个卷积层(conv,mp,relu)#输出通道20
        x = self.incep2(x)#输出通道20
        x = x.view(in_size, -1)
		#转成向量,连接一个全连接层(fc)。
        x = self.fc(x)
        return x
model =  Net()

#4.construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

#5.training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
 
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100*correct/total))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

[1, 300] loss: 1.008
[1, 600] loss: 0.206
[1, 900] loss: 0.150
accuracy on test set: 96 %
[2, 300] loss: 0.110
[2, 600] loss: 0.109
[2, 900] loss: 0.099
accuracy on test set: 97 %
[3, 300] loss: 0.078
[3, 600] loss: 0.082
[3, 900] loss: 0.076
accuracy on test set: 97 %
[4, 300] loss: 0.065
[4, 600] loss: 0.066
[4, 900] loss: 0.066
accuracy on test set: 98 %
[5, 300] loss: 0.057
[5, 600] loss: 0.057
[5, 900] loss: 0.058
accuracy on test set: 98 %
[6, 300] loss: 0.048
[6, 600] loss: 0.052
[6, 900] loss: 0.054
accuracy on test set: 98 %
[7, 300] loss: 0.045
[7, 600] loss: 0.046
[7, 900] loss: 0.049
accuracy on test set: 98 %
[8, 300] loss: 0.040
[8, 600] loss: 0.045
[8, 900] loss: 0.043
accuracy on test set: 98 %
[9, 300] loss: 0.039
[9, 600] loss: 0.040
[9, 900] loss: 0.040
accuracy on test set: 98 %
[10, 300] loss: 0.035
[10, 600] loss: 0.039
[10, 900] loss: 0.036
accuracy on test set: 98 %
参考

posted @   Ling22  阅读(45)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
点击右上角即可分享
微信分享提示