深度学习中 batchnorm 层是咋回事?

作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载请附上博文链接!

作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载请附上博文链接!

作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载请附上博文链接!

作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载请附上博文链接!

参考了这个博客, 博主写的非常好     https://blog.csdn.net/qq_25737169/article/details/79048516

 

前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。
本文旨在用通俗易懂的语言,对深度学习的常用算法–batchnorm的原理及其代码实现做一个详细的解读。本文主要包括以下几个部分。

 

第一节:Batchnorm主要解决的问题


首先,此部分也即是讲为什么深度网络会需要batchnormbatchnormbatchnorm,我们都知道,深度学习的话尤其是在CV上都需要对数据做归一化,因为深度神经网络主要就是为了学习训练数据的分布,并在测试集上达到很好的泛化效果,但是,如果我们每一个batch输入的数据都具有不同的分布,显然会给网络的训练带来困难。另一方面,数据经过一层层网络计算后,其数据分布也在发生着变化,此现象称为InternalInternalInternaCovariateCovariateCovariatShiftShiftShift,接下来会详细解释,会给下一层的网络学习带来困难。batchnormbatchnormbatchnorm直译过来就是批规范化,就是为了解决这个分布变化问题。

1.1 Internal Covariate Shift

InternaCovariatShift :此术语是google小组在论文BatchBatchBatcNormalizatoinNormalizatoinNormalizatoin 中提出来的,其主要描述的是:训练深度网络的时候经常发生训练困难的问题,因为,每一次参数迭代更新后,上一层网络的输出数据经过这一层网络计算后,数据的分布会发生变化,为下一层网络的学习带来困难(神经网络本来就是要学习数据的分布,要是分布一直在变,学习就很难了),此现象称之为InternalInternalInternaCovariateCovariateCovariatShiftShiftShift。

BatcNormalizatoin 之前的解决方案就是使用较小的学习率,和小心的初始化参数,对数据做白化处理,但是显然治标不治本。

1.2 covariate shift

InternaCovariatShift 和CovariateShift具有相似性,但并不是一个东西,前者发生在神经网络的内部,所以是Internal,后者发生在输入数据上。CovariatShift主要描述的是由于训练数据和测试数据存在分布的差异性,给网络的泛化性和训练速度带来了影响,我们经常使用的方法是做归一化或者白化。想要直观感受的话,看下图:

 

Covariate Shift 就是描述的输入数据分布不一致的现象,对数据做归一化当然可以加快训练速度,能对数据做去相关性,突出它们之间的分布相对差异就更好了。Batchnorm做到了,前文已说过,Batchnorm是归一化的一种手段,极限来说,这种方式会减小图像之间的绝对差异,突出相对差异,加快训练速度。所以说,并不是在深度学习的所有领域都可以使用BatchNorm,下文会写到其不适用的情况。

第二节:Batchnorm 原理解读


本部分主要结合原论文部分,排除一些复杂的数学公式,对BatchNorm的原理做尽可能详细的解释。

之前就说过,为了减小InternaCovariatShift,对神经网络的每一层做归一化不就可以了,假设将每一层输出后的数据都归一化到0均值,1方差,满足正太分布,但是,此时有一个问题,每一层的数据分布都是标准正太分布,导致其完全学习不到输入数据的特征,因为,费劲心思学习到的特征分布被归一化了,因此,直接对每一层做归一化显然是不合理的。
但是如果稍作修改,加入可训练的参数做归一化,那就是BatchNorm实现的了,接下来结合下图的伪代码做详细的分析:
这里写图片描述

之所以称之为batchnorm是因为所norm的数据是一个batch的,

1.先求出此次批量数据xxx的均值
2.求出此次batch的方差
3.接下来就是对xxx做归一化
4.最重要的一步,引入缩放和平移变量 ,计算归一化后的值

接下来详细介绍一下这额外的两个参数,之前也说过如果直接做归一化不做其他处理,神经网络是学不到任何东西的,但是加入这两个参数后,事情就不一样了,先考虑特殊情况下,如果γ和β分别等于此batch的标准差和均值,那么yi不就还原到归一化前的x了吗,也即是缩放平移到了归一化前的分布,相当于batchnormbatchnormbatchnorm没有起作用,$ β$ 和γγγ分别称之为 平移参数和缩放参数 。这样就保证了每一次数据经过归一化后还保留的有学习来的特征,同时又能完成归一化这个操作,加速训练。

 

第四节:Batchnorm的优点

主要部分说完了,接下来对BatchNorm做一个总结:

  • 没有它之前,需要小心的调整学习率和权重初始化,但是有了BN可以放心的使用大学习率,但是使用了BN,就不用小心的调参了,较大的学习率极大的提高了学习速度,
  • Batchnorm本身上也是一种正则的方式,可以代替其他正则方式如dropout等
  • 另外,个人认为,batchnorm降低了数据之间的绝对差异,有一个去相关的性质,更多的考虑相对差异性,因此在分类任务上具有更好的效果。

注:或许大家都知道了,韩国团队在2017NTIRE图像超分辨率中取得了top1的成绩,主要原因竟是去掉了网络中的batchnorm层,由此可见,BN并不是适用于所有任务的,在image-to-image这样的任务中,尤其是超分辨率上,图像的绝对差异显得尤为重要,所以batchnorm的scale并不适合。

 

作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载请附上博文链接!

posted @ 2019-02-20 14:49  稀里糊涂林老冷  阅读(1924)  评论(0编辑  收藏  举报