数据特征—正态性检验

利用观测数据判断总体是否服从正态分布的检验称为正态性检验,它是统计判决中重要的一种特殊的拟合优度假设检验。

正态分布

 

 

在实际数据分析过程中并不是所有数据都是满足正态分布

并不是必须满足正态分布才能分析

通过正太分布作为参考去理解事物规律

 

 

直方图初判 / QQ图判断 / K-S检验

直方图初判

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline
# 直方图初判

s = pd.DataFrame(np.random.randn(1000)+10,columns = ['value'])
print(s.head())
# 创建随机数据+10 就是μ往前+10

fig = plt.figure(figsize = (10,6))
ax1 = fig.add_subplot(2,1,1) # 创建子图1
ax1.scatter(s.index, s.values)
plt.grid()
# 绘制数据分布图

ax2 = fig.add_subplot(2,1,2) # 创建子图2
s.hist(bins=30,alpha = 0.5,ax = ax2)
s.plot(kind = 'kde', secondary_y=True,ax = ax2)
plt.grid()
# 绘制直方图
# 呈现较明显的正太性

 

 

 

QQ图判断

QQ图通过把测试样本数据的分位数与已知分布相比较,从而来检验数据的分布情况

QQ图是一种散点图,对应于正态分布的QQ图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图

参考直线:四分之一分位点和四分之三分位点这两点确定,看散点是否落在这条线的附近

绘制思路

① 在做好数据清洗后,对数据进行排序(次序统计量:x(1)<x(2)<....<x(n))

② 排序后,计算出每个数据对应的百分位p{i},即第i个数据x(i)为p(i)分位数,其中p(i)=(i-0.5)/n (pi有多重算法,这里以最常用方法为主)

③ 绘制直方图 + qq图,直方图作为参考

s = pd.DataFrame(np.random.randn(1000)+10,columns = ['value'])
print(s.head())

# 创建随机数据 rand 就不是正态分布的

mean = s['value'].mean()
std = s['value'].std()
print('均值为:%.2f,标准差为:%.2f' % (mean,std))
print('------')

# 计算均值,标准差

s.sort_values(by = 'value', inplace = True) # 重新排序
s_r = s.reset_index(drop = False) # 重新排序后,更新index
s_r['p'] = (s_r.index - 0.5) / len(s_r)  
s_r['q'] = (s_r['value'] - mean) / std
print(s_r.head())
print('------')

# 计算百分位数 p(i)

# 计算q值

st = s['value'].describe()
x1 ,y1 = 0.25, st['25%']
x2 ,y2 = 0.75, st['75%']
print('四分之一位数为:%.2f,四分之三位数为:%.2f' % (y1,y2))
print('------')

# 计算四分之一位数、四分之三位数

fig = plt.figure(figsize = (10,9))
ax1 = fig.add_subplot(3,1,1) # 创建子图1
ax1.scatter(s.index, s.values)
plt.grid()

# 绘制数据分布图

ax2 = fig.add_subplot(3,1,2) # 创建子图2
s.hist(bins=30,alpha = 0.5,ax = ax2)
s.plot(kind = 'kde', secondary_y=True,ax = ax2)
plt.grid()

# 绘制直方图

ax3 = fig.add_subplot(3,1,3) # 创建子图3
ax3.plot(s_r['p'],s_r['value'],'k.',alpha = 0.1)
ax3.plot([x1,x2],[y1,y2],'-r')
plt.grid()

# 绘制QQ图,直线为四分之一位数、四分之三位数的连线,基本符合正态分布

 

 

KS检验

比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法

样本数据的累计频数分布于特定的理论分布比较(比如正态分布),如果两者差距小,则推论样本分布取自某特定分布。

假设检验问题:

H0:样本的总体分布 服从 某种特定分布

H1:样本的总体分布 不服从 某特定分布

Fn(x)—样本的累计分布函数

F0(x)—理论分布的分布函数

D —Fn(x)与F0(x) 差值的绝对值最大值

D = max |Fn(x)-F0(x)|

D>D(n,α) 相比较 —p>0.05 则接受H0,P<0.05则拒绝H0,接受H1

 

 代码实现

data = [87,77,92,68,80,78,84,77,81,80,80,77,92,86,
      76,80,81,75,77,72,81,72,84,86,80,68,77,87,
      76,77,78,92,75,80,78]

# 样本数据,35位健康男性在未进食之前的血糖浓度

df = pd.DataFrame(data, columns =['value'])
u = df['value'].mean()
std = df['value'].std()
print("样本均值为:%.2f,样本标准差为:%.2f" % (u,std))
print('------')

# 查看数据基本统计量

s = df['value'].value_counts().sort_index()
df_s = pd.DataFrame({'血糖浓度':s.index,'次数':s.values})

# 创建频率数据

df_s['累计次数'] = df_s['次数'].cumsum()
df_s['累计频率'] = df_s['累计次数'] / len(data)
df_s['标准化取值'] = (df_s['血糖浓度'] - u) / std
df_s['理论分布'] =[0.0244,0.0968,0.2148,0.2643,0.3228,0.3859,0.5160,0.5832,0.7611,0.8531,0.8888,0.9803] # 通过查阅正太分布表
df_s['D'] = np.abs(df_s['累计频率'] - df_s['理论分布'])
dmax = df_s['D'].max()
print("实际观测D值为:%.4f" % dmax)

# D值序列计算结果表格

df_s['累计频率'].plot(style = '--k.')
df_s['理论分布'].plot(style = '--r.')
plt.legend(loc = 'upper left')
plt.grid()

# 密度图表示
df_s

 

 

 

直接用算法做KS检验

from scipy import stats

# scipy包是一个高级的科学计算库,它和Numpy联系很密切,Scipy一般都是操控Numpy数组来进行科学计算

data = [87,77,92,68,80,78,84,77,81,80,80,77,92,86,
      76,80,81,75,77,72,81,72,84,86,80,68,77,87,
      76,77,78,92,75,80,78]

# 样本数据,35位健康男性在未进食之前的血糖浓度

df = pd.DataFrame(data, columns =['value'])
u = df['value'].mean() # 计算均值
std = df['value'].std() # 计算标准差
stats.kstest(df['value'], 'norm', (u, std))

# .kstest方法:KS检验,参数分别是:待检验的数据,检验方法(这里设置成norm正态分布),均值与标准差

# 结果返回两个值:statistic → D值,pvalue → P值

# p值大于0.05,为正态分布

 

 

 

 

 

 

 

 

 

 

 

posted @ 2020-03-09 09:24  木子酱  阅读(1332)  评论(0编辑  收藏  举报