作者:Ross Girshick该论文提出的目标检测算法Fast Region-based Convolutional Network(Fast R-CNN)能够single-stage训练,并且可以同时学习对object proposals的分类与目标空间位置的确定,与以往的算法相比该方法在训练和测试速度、检测精度上均有较大提升。目标检测算法比较复杂主要是因为检测需要确定目标的准确位置,这样的话... Read More
作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun以前的CNNs都要求输入图像尺寸固定,这种硬性要求也许会降低识别任意尺寸图像的准确度。为避免这个问题,何凯明等人在该论文中提出了一种池化策略,“spatial pyramid pooling(SPP)“,即空间金字塔池化。带有该池化层的网络被称为SPPnet,对任何尺寸的输入图像都能生成... Read More
作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik该论文提出了一种简单且可扩展的检测算法,在VOC2012数据集上取得的mAP比当时性能最好的算法高30%。算法主要结合了两个key insights:(1)可以将高容量的卷积神经网络应用到自底向上的Region proposals(候选区域)上,以定位和分割目标(2)当带标签的训练... Read More