多分类模型训练使用交叉熵损失的一个注意的点
使用交叉熵损失的网络模型最后一层不要用softmax,交叉熵损失函数会在计算的时候做softmax,如果用了会导致模型训练异常,
如果模型最后一层有softmax,则损失函数要写成
loss_fun = nn.NLLLoss() x = model(data) loss = loss_fun(torch.log(x), label)
使用交叉熵损失的网络模型最后一层不要用softmax,交叉熵损失函数会在计算的时候做softmax,如果用了会导致模型训练异常,
如果模型最后一层有softmax,则损失函数要写成
loss_fun = nn.NLLLoss() x = model(data) loss = loss_fun(torch.log(x), label)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人