TensorFlow学习报告
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | # -*- coding: utf-8 -*- """ Created on Mon Apr 11 19:10:39 2022 @author: 10320 """ import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = [ 'T-shirt/top' , 'Trouser' , 'Pullover' , 'Dress' , 'Coat' , 'Sandal' , 'Shirt' , 'Sneaker' , 'Bag' , 'Ankle boot' ] train_images.shape len (train_labels) train_labels test_images.shape len (test_labels) plt.figure() plt.imshow(train_images[ 0 ]) plt.colorbar() plt.grid( False ) plt.show() train_images = train_images / 255.0 test_images = test_images / 255.0 plt.figure(figsize = ( 10 , 10 )) for i in range ( 25 ): plt.subplot( 5 , 5 ,i + 1 ) plt.xticks([]) plt.yticks([]) plt.grid( False ) plt.imshow(train_images[i], cmap = plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() model = keras.Sequential([ keras.layers.Flatten(input_shape = ( 28 , 28 )), keras.layers.Dense( 128 , activation = 'relu' ), keras.layers.Dense( 10 ) ]) model. compile (optimizer = 'adam' , loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True ), metrics = [ 'accuracy' ]) model.fit(train_images, train_labels, epochs = 10 ) |
(1)TensorFlow和PyTorch
(2)可以直接赋值,也可以使用初始化函数
import tensorflow as tf
bias1=tf.Variable(2)
bias2=tf.Variable(initial_value=3.)
还有其他更加复杂的初始化方法 如:tf.zeros\tf.zeros_like\tf.ones_like\tf.random.truncated_normal等等
tf.random.truncated_normal和tf.zeros是常常用来进行权值和偏置的初始化方法
(3)序贯式、函数式
#序贯式1
import tensorflow as tf
model = tf.keras.Sequential()
#创建一个全连接层,神经元个数为256,输入为784,激活函数为relu
model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
#序贯式2
import tensorflow as tf
imput_layer = tf.keras.layers.Input(shape=(784,))
hid1_layer = tf.keras.layers.Dense(256, activation='relu')
hid2_layer = tf.keras.layers.Dense(128, activation='relu')
output_layers = tf.keras.layers.Dense(10, activation='softmax') #将层的列表传给Sequential的构造函数
model = tf.keras.Sequential(layers=[imput_layer, hid1_layer, hid2_layer, output_layers])
#函数式
import tensorflow as tf
#创建一个模型,包含一个输入层和三个全连接层
inputs = tf.keras.layers.Input(shape=(4))
x=tf.keras.layers.Dense(32,activation='relu')(inputs)
x=tf.keras.layers.Dense(64,activation='relu')(x)
outputs=tf.keras.layers.Dense(3,activation='softmax')(x)
model=tf.keras.Model(inputs=inputs,outputs =outputs)
(4)
import torch
data=torch.rand(5,3)
print(data)
(5)Keras、Caffe、MXNet、Sonnet、Deeplearning4j
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律