深入理解计算机系统 CSAPP
Computer Systems A Programmer's perspective
关于进程与线程的相关知识
进程
像hello这样的程序在现代系统上运行时,操作系统会提供一种假象,就好像系统上只有这个程序在运行。程序看上去是独占地使用处理器、主存和I/O设备。处理器看上去就像在不间断地一条接一条地执行程序中的指令,即该程序的代码和数据是系统内存中唯一的对象。这些假象是通过进程的概念来实现的,进程是计算机科学中最重要和最成功的概念之一。
进程是操作系统对一个正在运行的程序的一种抽象。在一个系统上可以同时运行多个进程,而每个进程都好像在独占地使用硬件。而并发运行,则是说一个进程的指令和另一个进程的指令是交错执行的。在大多数系统中,需要运行的进程数是多于可以运行它们的CPU个数的。传统系统在一个时刻只能执行一个程序,而先进的多核处理器同时能够执行多个程序。无论是在单核还是多核系统中,一个CPU看上去都像是在并发地执行多个进程,这是通过处理器在进程间切换来实现的。操作系统实现这种交错执行的机制称为上下文切换。为了简化讨论,我们只考虑包含一个 CPU的单处理器系统的情况。
操作系统保持跟踪进程运行所需的所有状态信息。这种状态,也就是上下文,包括许多信息,比如PC(程序计数器)和寄存器文件的当前值,以及主存的内容。在任何一个时刻,单处理器系统都只能执行一个进程的代码。当操作系统决定要把控制权从当前进程转移到某个新进程时,就会进行上下文切换,即保存当前进程的上下文、恢复新进程的上下文,然后将控制权传递到新进程。新进程就会从它上次停止的地方开始。图1-12展示了示例hello程序运行场景的基本理念。
示例场景中有两个并发的进程: shell进程和 hello进程。最开始,只有shell 进程在运行,即等待命令行上的输入。当我们让它运行hello程序时,shell通过调用一个专门的函数,即系统调用,来执行我们的请求,系统调用会将控制权传递给操作系统。操作系统保存shell进程的上下文,创建一个新的hello进程及其上下文,然后将控制权传给新的hello进程。hello进程终止后,操作系统恢复shell 进程的上下文,并将控制权传回给它,shell进程会继续等待下一个命令行输入。
如图1-12所示,从一个进程到另一个进程的转换是由操作系统内核(kernel)管理的。内核是操作系统代码常驻主存的部分。当应用程序需要操作系统的某些操作时,比如读写文件,它就执行一条特殊的系统调用(system call)指令,将控制权传递给内核。然后内核执行被请求的操作并返回应用程序。注意,内核不是一个独立的进程。相反,它是系统管理全部进程所用代码和数据结构的集合。
异常是允许操作系统内核提供进程( process)概念的基本构造块,进程是计算机科学中最深刻、最成功的概念之一。
在现代系统上运行一个程序时,我们会得到一个假象,就好像我们的程序是系统中当前运行的唯一的程序一样。我们的程序好像是独占地使用处理器和内存。处理器就好像是无间断地一条接一条地执行我们程序中的指令。最后,我们程序中的代码和数据好像是系统内存中唯一的对象。这些假象都是通过进程的概念提供给我们的。
进程的经典定义就是一个执行中程序的实例。系统中的每个程序都运行在某个进程的上下文(context)中。上下文是由程序正确运行所需的状态组成的。这个状态包括存放在内存中的程序的代码和数据,它的栈、通用目的寄存器的内容、程序计数器、环境变量以及打开文件描述符的集合。
每次用户通过向shell输人一个可执行目标文件的名字,运行程序时,shell就会创建一个新的进程,然后在这个新进程的上下文中运行这个可执行目标文件。应用程序也能够创建新进程,并且在这个新进程的上下文中运行它们自己的代码或其他应用程序。
关于操作系统如何实现进程的细节的讨论超出了本书的范围。反之,我们将关注进程提供给应用程序的关键抽象:
- 一个独立的逻辑控制流,它提供一个假象,好像我们的程序独占地使用处理器。
- 一个私有的地址空间,它提供一个假象,好像我们的程序独占地使用内存系统。让我们更深入地看看这些抽象。
逻辑控制流
即使在系统中通常有许多其他程序在运行,进程也可以向每个程序提供一种假象,好像它在独占地使用处理器。如果想用调试器单步执行程序,我们会看到一系列的程序计数器(PC)的值,这些值唯一地对应于包含在程序的可执行目标文件中的指令,或是包含在运行时动态链接到程序的共享对象中的指令。这个PC值的序列叫做逻辑控制流,或者简称逻辑流。
虚拟内存
虚拟内存是一个抽象概念,它为每个进程提供了一个假象,即每个进程都在独占地使用主存。每个进程看到的内存都是一致的,称为虚拟地址空间。图1-13所示的是Linux进程的。
虚拟地址空间(其他Unix系统的设计也与此类似)。在Linux中,地址空间最上面的区域是保留给操作系统中的代码和数据的,这对所有进程来说都是一样。地址空间的底部区域存放用户进程定义的代码和数据。请注意,图中的地址是从下往上增大的。
每个进程看到的虚拟地址空间由大量准确定义的区构成,每个区都有专门的功能。在本书的后续章节你将学到更多有关这些区的知识,但是先简单了解每一个区是非常有益的。我们从最低的地址开始,逐步向上介绍。
-
程序代码和数据。对所有的进程来说,代码是从同一固定地址开始,紧接着的是和.C全局变量相对应的数据位置。代码和数据区是直接按照可执行目标文件的内容初始化的,在示例中就是可执行文件 hello。在第9章我们研究链接和加载时,你会学习更多有关地址空间的内容。
-
堆。代码和数据区后紧随着的是运行时堆。代码和数据区在进程一开始运行时就被指定了大小,与此不同,当调用像malloc和 free这样的C标准库函数时,堆可以在运行时动态地扩展和收缩。在第9章学习管理虚拟内存时,我们将更详细地研究堆。
-
共享库。大约在地址空间的中间部分是一块用来存放像C标准库和数学库这样的共享库的代码和数据的区域。共享库的概念非常强大,也相当难懂。在第﹖章介绍动态链接时,将学习共享库是如何工作的。
-
栈。位于用户虚拟地址空间顶部的是用户栈,编译器用它来实现函数调用。和堆一样,用户栈在程序执行期间可以动态地扩展和收缩。特别地,每次我们调用一个函数时,栈就会增长;从一个函数返回时,栈就会收缩。在第3章中将学习编译器是如何使用栈的。
-
内核虚拟内存。地址空间顶部的区域是为内核保留的。不允许应用程序读写这个区域的内容或者直接调用内核代码定义的函数。相反,它们必须调用内核来执行这些操作。
虚拟内存的运作需要硬件和操作系统软件之间精密复杂的交互,包括对处理器生成的每个地址的硬件翻译。基本思想是把一个进程虚拟内存的内容存储在磁盘上,然后用主存作为磁盘的高速缓存。第9章将解释它如何工作,以及为什么对现代系统的运行如此重要。
用户模式和内核模式
为了使操作系统内核提供一个无懈可击的进程抽象,处理器必须提供一种机制,限制一个应用可以执行的指令以及它可以访问的地址空间范围。
处理器通常是用某个控制寄存器中的一个模式位(mode bit)来提供这种功能的,该寄存器描述了进程当前享有的特权。当设置了模式位时,进程就运行在内核模式中(有时叫做超级用户模式)。一个运行在内核模式的进程可以执行指令集中的任何指令,并且可以访问系统中的任何内存位置。
没有设置模式位时,进程就运行在用户模式中。用户模式中的进程不允许执行特权指令( privileged instruction),比如停止处理器、改变模式位,或者发起一个I/O操作。也不允许用户模式中的进程直接引用地址空间中内核区内的代码和数据。任何这样的尝试都会导致致命的保护故障。反之,用户程序必须通过系统调用接口间接地访问内核代码和数据。
运行应用程序代码的进程初始时是在用户模式中的。进程从用户模式变为内核模式的唯一方法是通过诸如中断、故障或者陷入系统调用这样的异常。当异常发生时,控制传递到异常处理程序,处理器将模式从用户模式变为内核模式。处理程序运行在内核模式中,当它返回到应用程序代码时,处理器就把模式从内核模式改回到用户模式。
Linux提供了一种聪明的机制,叫做/proc文件系统,它允许用户模式进程访问内核数据结构的内容。/proc文件系统将许多内核数据结构的内容输出为一个用户程序可以读的文本文件的层次结构。比如,你可以使用/proc文件系统找出一般的系统属性,比如CPU类型(/proc/cpuinfo),或者某个特殊的进程使用的内存段(/proc/<process-id>/maps)。2.6版本的 Linux内核引入/sys文件系统,它输出关于系统总线和设备的额外的低层信息。
上下文切换
操作系统内核使用一种称为上下文切换(context switch)的较高层形式的异常控制流来实现多任务。上下文切换机制是建立在8.1节中已经讨论过的那些较低层异常机制之上的。
内核为每个进程维持一个上下文(context)。上下文就是内核重新启动一个被抢占的进程所需的状态。它由一些对象的值组成,这些对象包括通用目的寄存器、浮点寄存器、程序计数器、用户栈、状态寄存器、内核栈和各种内核数据结构,比如描述地址空间的页表、包含有关当前进程信息的进程表,以及包含进程已打开文件的信息的文件表。
在进程执行的某些时刻,内核可以决定抢占当前进程,并重新开始一个先前被抢占了的进程。这种决策就叫做调度(scheduling),是由内核中称为调度器(scheduler)的代码处理的。当内核选择一个新的进程运行时,我们说内核调度了这个进程。在内核调度了一个新的进程运行后,它就抢占当前进程,并使用一种称为上下文切换的机制来将控制转移到新的进程
上下文切换
1)保存当前进程的上下文
2)恢复某个先前被抢占的进程被保存的上下文
3)将控制传递给这个新恢复的进程。
当内核代表用户执行系统调用时,可能会发生上下文切换。如果系统调用因为等待某个事件发生而阻塞,那么内核可以让当前进程休眠,切换到另一个进程。比如,如果一个read系统调用需要访问磁盘,内核可以选择执行上下文切换,运行另外一个进程,而不是等待数据从磁盘到达。另一个示例是sleep系统调用,它显式地请求让调用进程休眠。一般而言,即使系统调用没有阻塞,内核也可以决定执行上下文切换,而不是将控制返回给调用进程。
中断也可能引发上下文切换。比如,所有的系统都有某种产生周期性定时器中断的机制,通常为每1毫秒或每10毫秒。每次发生定时器中断时,内核就能判定当前进程已经运行了足够长的时间,并切换到一个新的进程。
图8-14展示了一对进程A和B之间上下文切换的示例。在这个例子中,进程A初始运行在用户模式中,直到它通过执行系统调用read陷入到内核。内核中的陷阱处理程序请求来自磁盘控制器的DMA传输,并且安排在磁盘控制器完成从磁盘到内存的数据传输后,磁盘中断处理器。
进程的优劣
对于在父、子进程间共享状态信息,进程有一个非常清晰的模型:共享文件表,但是不共享用户地址空间。进程有独立的地址空间既是优点也是缺点。这样一来,一个进程不可能不小心覆盖另一个进程的虚拟内存,这就消除了许多令人迷惑的错误——这是一个明显的优点。
另一方面,独立的地址空间使得进程共享状态信息变得更加困难。为了共享信息,它们必须使用显式的IPC(进程间通信)机制。基于进程的设计的另一个缺点是,它们往往比较慢,因为进程控制和IPC的开销很高。
线程
到目前为止,我们已经看到了两种创建并发逻辑流的方法。在第一种方法中,我们为每个流使用了单独的进程。内核会自动调度每个进程,而每个进程有它自己的私有地址空间,这使得流共享数据很困难。在第二种方法中,我们创建自己的逻辑流,并利用I/O多路复用来显式地调度流。因为只有一个进程,所有的流共享整个地址空间。本节介绍第三种方法—基于线程,它是这两种方法的混合。
线程(thread)就是运行在进程上下文中的逻辑流。在本书里迄今为止,程序都是由每个进程中一个线程组成的。但是现代系统也允许我们编写一个进程里同时运行多个线程的程序。线程由内核自动调度。每个线程都有它自己的线程上下文(thread context),包括一个唯一的整数线程ID(Thread ID,TID)、栈、栈指针、程序计数器、通用目的寄存器和条件码。所有的运行在一个进程里的线程共享该进程的整个虚拟地址空间。
基于线程的逻辑流结合了基于进程和基于I/O多路复用的流的特性。同进程一样,线程由内核自动调度,并且内核通过一个整数ID来识别线程。同基于I/O多路复用的流一样,多个线程运行在单一进程的上下文中,因此共享这个进程虚拟地址空间的所有内容,包括它的代码、数据、堆、共享库和打开的文件。
线程执行模型
多线程的执行模型在某些方面和多进程的执行模型是相似的。思考图12-12中的示例。每个进程开始生命周期时都是单一线程,这个线程称为主线程(main thread)。在某一时刻,主线程创建一个对等线程(peer thread),从这个时间点开始,两个线程就并发地运行。最后,因为主线程执行一个慢速系统调用,例如read或者sleep,或者因为被系统的间隔计时器中断,控制就会通过上下文切换传递到对等线程。对等线程会执行一段时间,然后控制传递回主线程,依次类推。
在一些重要的方面,线程执行是不同于进程的。因为一个线程的上下文要比一个进程的上下文小得多,线程的上下文切换要比进程的上下文切换快得多。另一个不同就是线程不像进程那样,不是按照严格的父子层次来组织的。和一个进程相关的线程组成一个对等(线程)池,独立于其他线程创建的线程。主线程和其他线程的区别仅在于它总是进程中第一个运行的线程。对等(线程)池概念的主要影响是,一个线程可以杀死它的任何对等线程,或者等待它的任意对等线程终止。另外,每个对等线程都能读写相同的共享数据。
线程内存模型
一组并发线程运行在一个进程的上下文中。每个线程都有它自己独立的线程上下文,包括线程ID、栈、栈指针、程序计数器、条件码和通用目的寄存器值。每个线程和其他线程一起共享进程上下文的剩余部分。这包括整个用户虚拟地址空间,它是由只读文本(代码)、读/′写数据、堆以及所有的共享库代码和数据区域组成的。线程也共享相同的打开文件的集合。
从实际操作的角度来说,让一个线程去读或写另一个线程的寄存器值是不可能的。另一方面,任何线程都可以访问共享虚拟内存的任意位置。如果某个线程修改了一个内存位置,那么其他每个线程最终都能在它读这个位置时发现这个变化。因此,寄存器是从不共享的,而虚拟内存总是共享的。
各自独立的线程栈的内存模型不是那么整齐清楚的。这些栈被保存在虚拟地址空间的栈区域中,并且通常是被相应的线程独立地访问的。我们说通常而不是总是,是因为不同的线程栈是不对其他线程设防的。所以,如果一个线程以某种方式得到一个指向其他线程栈的指针,那么它就可以读写这个栈的任何部分。