bzoj3309 DZY Loves Math
题目描述:
题解:
线性筛……
瞎jb反演得到$ans=\sum\limits _{T=1}^{a} \lfloor \frac{a}{T} \rfloor \lfloor \frac{b}{T} \rfloor \sum\limits _{d|T} f(d) \mu(\frac{T}{d})$。
后面那个要求$O(n)$筛出来。
剩下的我讲不明白,直接挂PoPoQQQ题解了。
代码:
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; const int N = 10000050; template<typename T> inline void read(T&x) { T f = 1,c = 0;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();} x = f*c; } bool vis[N]; int pri[N/10],pnt,f[N],fk[N]; ll s[N]; inline void init() { for(register int i=2;i<=10000000;++i) { if(!vis[i]) { pri[++pnt]=i; s[i] = 1; f[i] = 1,fk[i] = i; } for(register int j=1;i*pri[j]<=10000000;++j) { int now = i*pri[j]; vis[now]=1; if(i%pri[j]) { f[now] = 1,fk[now] = pri[j]; s[now] = (f[i]==1)?-s[i]:0; }else { f[now] = f[i]+1,fk[now] = fk[i]*pri[j]; int las = i/fk[i]; if(las==1)s[now]=1; else s[now]=(f[las]==f[now])?-s[las]:0; break; } } } for(register int i=1;i<=10000000;++i)s[i]+=s[i-1]; } int T,n,m; inline void work() { read(n),read(m); ll ans = 0;int mn = min(n,m); for(register int i=1,j;i<=mn;i=j+1) { j = min(n/(n/i),m/(m/i)); ans+=1ll*(n/i)*(m/i)*(s[j]-s[i-1]); } printf("%lld\n",ans); } int main() { // freopen("tt.in","r",stdin); read(T);init(); while(T--)work(); return 0; }